
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 5562
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

www.manaraa.com

Richard F. Paige Alan Hartman
Arend Rensink (Eds.)

Model Driven
Architecture -
Foundations
and Applications

5th European Conference, ECMDA-FA 2009
Enschede, The Netherlands, June 23-26, 2009
Proceedings

13

www.manaraa.com

Volume Editors

Richard F. Paige
University of York
Department of Computer Science
Heslington, York, U.K.
E-mail: paige@cs.york.ac.uk

Alan Hartman
IBM India Research Laboratory
Bangalore, India
E-mail: alan.hartman.gm@gmail.com

Arend Rensink
University of Twente
Department of Computer Science
Enschede, The Netherlands
E-mail: rensink@cs.utwente.nl

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.2, D.2, D.3, F.3, C.3, H.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-02673-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02673-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12706525 06/3180 5 4 3 2 1 0

www.manaraa.com

Preface

The fifth edition of the European Conference on Model-Driven Architecture
Foundations and Applications (ECMDA-FA 2009) was dedicated to furthering
the state of knowledge and fostering the industrialization of Model-Driven Ar-
chitecture (MDA) and Model-Driven Engineering (MDE). MDA is an initiative
proposed by the Object Management Group for platform-generic systems de-
velopment; MDA is one of a class of approaches under the umbrella of MDE.
MDE and MDA promote the use of models in the specification, design, analysis,
synthesis, deployment, and evolution of complex software systems.

It is a pleasure to be able to introduce the proceedings of ECMDA-FA 2009.
ECMDA-FA 2009 addressed various MDA areas including model transforma-
tions, modelling language issues, modelling of behavior and time, traceability
and scalability, model-based embedded systems engineering, and the application
of model-driven development to IT and networking systems.

ECMDA-FA 2009 focused on engaging key European and international re-
searchers and practitioners in a dialogue which will result in a stronger, more
efficient industry, producing more reliable software on the basis of state-of-the-art
research results. ECMDA-FA is a forum for exchanging information, discussing
the latest results and arguing about future developments of MDA and MDE.
Particularly, it is one of the few venues that engages both leading academic
researchers and industry practitioners, with the intent of creating synergies.

The Program Committee accepted, with the help of additional reviewers,
research papers and industry papers for ECMDA-FA 2009. We received 72 sub-
missions. Of these, a total of 23 were accepted: 16 research papers and 7 indus-
trial papers. We thank the Program Committee for their thorough reviews and
detailed discussion during the selection process.

There are so many people who deserve warm thanks and gratitude. The fruit-
ful collaboration of the Organization, Steering and Program Committee members
and the vibrant MDE/MDA community led to a successful conference: ECMDA-
FA 2009 obtained excellent results in terms of submissions, program size, and
attendance.

The Steering Committee members helped with various issues and we enjoyed
continuous and constructive interactions with them. Arend Rensink, the Confer-
ence Chair, led a highly responsive and very organized local team. In addition,
ECMDA-FA 2009 was complemented by a varied and successful set of workshops
and tutorials: for this we would like to thank the Workshops and Tutorials Chair,
Lúıs Ferreira Pires.

We would like to thank the University of Twente, MODELPLEX, the Centre
for Telematics and Information Technology (CTIT) and the European Associa-
tion of Software Science and Technology (EASST) for their support.

www.manaraa.com

VI Preface

Finally, we would like to thank all the authors who spent valuable time in
preparing and submitting papers to ECMDA-FA 2009, our keynote speakers –
David Harel, Tim Trew, Akira Ohata and Laurent Balmelli – and the sponsors
of ECMDA-FA 2009.

June 2009 Richard Paige
Alan Hartman

www.manaraa.com

Organization

ECMDA-FA 2009 was organized by the University of Twente, Enschede, The
Netherlands, with the support of the IBM Corporation and the Software and
Systems Modelling Team at the University of York, UK.

Conference Committee

Conference Chair Arend Rensink (Twente, The Netherlands)
Program Chairs Richard Paige (University of York, UK)

Alan Hartman (IBM, India)
Workshop and Tutorial Chair Lúıs Ferreira Pires (Twente, The Netherlands)
Tools and Demos Chair Regis Vogel (IHG, USA)
Organization Chair Ivan Kurtev (Twente, The Netherlands)
Publicity Chair Andrey Sadovykh (Softeam, France)

Steering Committee

Terry Bailey Vicinay Cadenas, Spain
Philippe Desfray Softeam, France
Alan Hartman IBM, India
Richard Paige University of York, UK
Arend Rensink University of Twente, The Netherlands
Andy Schürr T.U. Darmstadt, Germany
Regis Vogel IHG, USA

Program Committee

Jan Aagedal Telenor
David Akehurst Thales
Terry Bailey Vicinay Cadenas
Mariano Belaunde France Telecom
Xavier Blanc Universite de Paris-6
Marc Born IKV
Phil Brooke University of Teesside
Zhen Ru Dai Philips
Jean-Luc De Keyser LIFL
Miguel De Miguel Polytechnical University of Madrid
Birgit Demuth Technical University Dresden
Juergen Dingel Queens University, Canada
Gregor Engels University of Paderborn
Miguel Angel Fernandez Telefonica

www.manaraa.com

VIII Organization

Lúıs Ferreira Pires University of Twente
David Frankel SAP
Mathias Fritzsche SAP
Alan Hartman IBM
Andreas Hoffmann Fraunhofer Fokus
Frederic Jouault INRIA and EMN
Gabor Karsai Vanderbilt University
Olaf Kath IKV
Ingolf Krueger University of California at San Diego
Ivan Kurtev University of Twente
Ralf Laemmel University of Koblenz
Tiziana Margaria University of Potsdam
Erhan Mengusoglu IBM
Parastoo Mohagheghi SINTEF
Nanjagud Narendra IBM
Tor Neple SINTEF
Bjorn Nordmoen Western Geco
Richard Paige University of York
Christoph Pohl SAP
Arend Rensink University of Twente
Laurent Rioux Thales
Tom Ritter Fraunhofer Fokus
Julia Rubin IBM
Bernhard Rumpe RTWH Aachen
Andrey Sadovykh Softeam
Houari Sahraoui University of Montreal
Ina Schieferdecker Technical University Berlin
Doug Schmidt Vanderbilt University
Andy Schürr Darmstadt University of Technology
Bran Selic Malina
Bikram Sengupta IBM
Alin Stefanescu SAP
Juha-Pekka Tolvanen Metacase
Tim Trew NXP
Andreas Ulrich Siemens
Pieter van Gorp University of Eindhoven
Marten van Sinderen University of Twente
Regis Vogel IHG
Jos Warmer Ordina
Jules White Vanderbilt University
Steffen Zschaler University of Lancaster

www.manaraa.com

Organization IX

External Reviewers

R. Bendraou
L. Daniele
B. Demchak
C. Dumoulin
A. Etien

D. Kolovos
M. Meisinger
M. Menarini
J.-M. Mottu
A. Muller

J. Polowinski
S. Richly
L. Santos
D. Zhou

www.manaraa.com

Table of Contents

Creating Embedded Platforms with MDA: Where’s the Sweet Spot? 1
Tim Trew

Foundations

Comparison of Three Model Transformation Languages 2
Roy Grønmo, Birger Møller-Pedersen, and Gøran K. Olsen

On the Use of Higher-Order Model Transformations 18
Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and
Jean Bézivin

Managing Model Adaptation by Precise Detection of Metamodel
Changes . 34

Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin

A Pattern Mining Approach Using QVT . 50
Jens Kübler and Thomas Goldschmidt

A Language-Theoretic View on Guidelines and Consistency Rules of
UML . 66

Zhe Chen and Gilles Motet

A Domain Specific Language for Extracting Models in Software
Modernization . 82

Javier Luis Cánovas Izquierdo and Jesús Garćıa Molina

Challenges in Combining SysML and MARTE for Model-Based Design
of Embedded Systems . 98

Huascar Espinoza, Daniela Cancila, Bran Selic, and
Sébastien Gérard

Derivation and Refinement of Textual Syntax for Models 114
Florian Heidenreich, Jendrik Johannes, Sven Karol,
Mirko Seifert, and Christian Wende

Uniform Random Generation of Huge Metamodel Instances 130
Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michèle Soria

Establishing Correspondences between Models with the Epsilon
Comparison Language . 146

Dimitrios S. Kolovos

www.manaraa.com

XII Table of Contents

Dependent and Conflicting Change Operations of Process Models 158
Jochen M. Küster, Christian Gerth, and Gregor Engels

Enabling Automated Traceability Maintenance through the Upkeep of
Traceability Relations . 174

Patrick Mäder, Orlena Gotel, and Ilka Philippow

Temporal Extensions of OCL Revisited . 190
Michael Soden and Hajo Eichler

An MDA-Based Approach for Behaviour Modelling of Context-Aware
Mobile Applications . 206

Laura M. Daniele, Lúıs Ferreira Pires, and Marten van Sinderen

A Model Driven Approach to the Analysis of Timeliness Properties 221
Mohamed A. Ameedeen, Behzad Bordbar, and Rachid Anane

A Hybrid Graphical and Textual Notation and Editor for UML
Actions . 237

Anis Charfi, Artur Schmidt, and Axel Spriestersbach

Applications

Mapping Requirement Models to Mathematical Models in Control
System Development . 253

Dominik Schmitz, Ming Zhang, Thomas Rose, Matthias Jarke,
Andreas Polzer, Jacob Palczynski, Stefan Kowalewski, and
Michael Reke

On Study Results: Round Trip Engineering of Space Systems 265
Andrey Sadovykh, Lionel Vigier, Eduardo Gomez,
Andreas Hoffmann, Juergen Grossmann, and Oleg Estekhin

MoPCoM/MARTE Process Applied to a Cognitive Radio System
Design and Analysis . 277

Ali Koudri, Joël Champeau, Denis Aulagnier, and Philippe Soulard

Managing Flexibility: Modeling Binding-Times in Simulink 289
Danilo Beuche and Jens Weiland

Experiences of Developing a Network Modeling Tool Using the Eclipse
Environment . 301

Andy Evans, Miguel A. Fernández, and Parastoo Mohagheghi

MBT4Chor: A Model-Based Testing Approach for Service
Choreographies . 313

Alin Stefanescu, Sebastian Wieczorek, and Andrei Kirshin

www.manaraa.com

Table of Contents XIII

Model-Based Interoperability of Heterogeneous Information Systems:
An Industrial Case Study . 325

Nikola Milanovic, Mario Cartsburg, Ralf Kutsche,
Jürgen Widiker, and Frank Kschonsak

Author Index . 337

www.manaraa.com

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, p. 1, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Creating Embedded Platforms with MDA: Where's the
Sweet Spot?

Tim Trew

NXP Semiconductors, Eindhoven, The Netherlands
Tim.Trew@nxp.com

Abstract. MDA is often promoted to enable the portability of applications
across platforms, but what of the development of platforms themselves? To-
day's consumer electronics products, such as TVs and mobile phones are based
on complex integrated circuits to support their many functions. Cost and power
consumption is crucial and semiconductor suppliers have to deliver substantial
amounts of software to deliver the best performance from their hardware de-
signs. This low-level software might be exposed to customers as device drivers
for the operating system of their choice, and their development gives a different
perspective on "platform specific models". Given the sensitivity of this software
to changes in both customer requirements and their overall software architec-
ture, and to changes in the underlying hardware, software development and
maintenance effort becomes an increasing proportion of the overall engineering
effort. The presentation will describe the software development challenges
faced by a semiconductor supplier and some of our experiments in meeting
these challenges with MDA. It will reveal the technical limitations encountered
and the greater problems of deploying unfamiliar technology across large de-
velopment teams. This guides us in the hunt for the "sweet spot", where MDA
delivers benefits with an acceptable learning curve and project risk.

www.manaraa.com

Comparison of Three Model Transformation
Languages

Roy Grønmo1,2, Birger Møller-Pedersen1, and Gøran K. Olsen2

1 Department of Informatics, University of Oslo, Norway
2 SINTEF Information and Communication Technology, Oslo, Norway

{roygr,birger}@ifi.uio.no, goran.k.olsen@sintef.no

Abstract. In this paper we compare three model transformation lan-
guages: 1) Concrete syntax-based graph transformation (CGT) which
is our emerging model transformation language, 2) Attributed Graph
Grammar (AGG) representing traditional graph transformation, and 3)
Atlas Transformation Language (ATL) representing model transforma-
tion. Our case study is a fairly complicated refactoring of UML activity
models. The case study shows that CGT rules are more concise and re-
quires considerably less effort from the modeler, than with AGG and
ATL. With AGG and ATL, the transformation modeler needs access to
and knowledge of the metamodel and the representation in the abstract
syntax. In CGT rules on the other hand, the transformation modeler
can concentrate on the familiar concrete syntax of the source and target
languages.

1 Introduction

In model-driven engineering, the graphical models are the primary assets, and
model-to-model transformations define mappings between models. The leading
model-to-model transformation languages, such as Atlas Transformation Lan-
guage (ATL) [6], are textual-based programming languages even though the
source and target models are graphical models. It is a paradox that the model-
driven community promotes the usage of models instead of textual code, while
the same community dominantly uses textual code to define the model transfor-
mations. Model-to-model transformation languages can handle arbitrary source
and target modeling languages, as long as they can be defined in a highly generic
metamodeling language, such as Meta-Object Facility [9].

As opposed to ATL, graph transformations (such as Attributed Graph Gram-
mar (AGG) [16]) provide graphical languages to define model-to-model trans-
formations. Graph transformations are defined upon metamodel elements and
visualized with a generic layout, called abstract syntax, where nodes are visual-
ized as rectangles and edges as directed arrows.

The concrete syntax of a modeling language uses a tailored visualization with
icons and rendering rules depending on the element types. Concrete syntax-based
graph transformation (CGT) is our own emerging model-to-model transforma-
tion language that uses graph transformation principles, and where the rules

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 2–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Comparison of Three Model Transformation Languages 3

are defined with concrete syntax. In this paper we investigate one configuration
of CGT, with UML 2 activity models [11] as the source and target language
(described previously in [3]). In general CGT can be configured with a different
source and target language, and is thus comparable with the general model-to-
model transformation languages ATL and AGG.

We illustrate the benefits of CGT by investigating a complicated model refac-
toring problem, which we will refer to as removeGoto. The refactoring task is to
translate an activity model with arbitrary goto-like control flow into an activity
model with structured loops (the refactoring task is taken from Koehler et al.
[7]). We have implemented three alternative solutions for the removeGoto task
using: 1) CGT, 2) AGG, and 3) ATL. Our findings can be summarized as follows:

– CGT can handle complex model transformations such as the removeGoto
problem.

– The CGT solution to the removeGoto problem is more concise and was made
with considerably less effort than the corresponding solutions in AGG and
ATL.

2 Remove Unstructrured Cycles

Our running example is a business process model of a Web-based shopping ap-
plication also taken from Koehler et al. [7]. The example is modeled with UML 2
activity models and we only show a submodel of the full business process model.
The first model in Figure 1 (labeled 1) shows our source model of the trans-
formation, and represents a business process model with four activities. A Web
shopper is allowed to select items (Select activity), configure the chosen items
(Configure activity), put chosen items into the shopping cart (Put activity),
and to finalize the shopping by leaving with an empty cart or with items to
buy (Finish activity). Each control flow between two activities has a two letter
guard that reflects the user choice to move from one activity to the next. The
two letters are the first letters in the involved activity names.

The transformation task explained below requires that there is no explicit
parallelism (no forks), and no implicit parallelism resulting from multiple out-
going control flow edges from the same activity. With no parallelism we can
simplify the model, as we have in the figure, by not using explicit decision nodes
and interpret multiple outgoing control flow as XOR-behavior. This interpreta-
tion is different from the activity model semantics, but is unproblematic since
a complete transformation would isolate this simplification to the intermediate
models. All the three transformation languages benefit from the simplification.

There are several approaches where the business process models are used to
automatically generate BPEL code [13,12] that can be used to execute the busi-
ness process in a BPEL engine. However, BPEL does not support unstructured
cycles, meaning that we need to remove all the unstructured cycles of the activity
model before generating BPEL.

In an unstructured cycle there is more than one entry or exit point into
or out of the cycle. For instance, model 1 in Figure 1 contains the cycle

www.manaraa.com

4 R. Grønmo, B. Møller-Pedersen, and G.K. Olsen

Configure

[ss]

Finish Put

Select
[sp][ps][sf]

[cf]

[sc][cs]

[cp][pf]

[ss or (sc and cs)]

Finish Put

Select;
if sc Configure endif;

[sp or
(sc and cp)][ps]

[sf or
(sc and cf)]

[pf]

T2

[ss or (sc and cs) or
((sp or (sc and cp)) and ps)]

Finish

[sf or (sc and cf) or
((sp or (sc and cp)) and pf)]

Select;
if sc Configure endif;
if sp or (sc and cp) Put endif;

T2

Finish

[sf or (sc and cf) or
((sp or (sc and cp)) and pf)]

repeat
Select; if sc Configure endif;
if sp or (sc and cp) Put endif;

while ss or (sc and cs) or
((sp or (sc and cp)) and ps);

T1

T2
repeat

Select; if sc Configure endif;
if sp or (sc and cp) Put endif;

while ss or (sc and cs) or
((sp or (sc and cp)) and ps);

if sf or (sc and cf) or ((sp or
(sc and cp)) and pf) Finish endif;

1 2

3

4

5

Fig. 1. From unstructured cycles to structured loops

Select-Configure-Put-Selectwhich can be exited to the Finish activity from
all three activities in the cycle. Another example is the cycle Select-Put-Select
which can be entered from both the initial node and the Configure activity, and
exited from both activities in the cycle.

Forcing the business process designer to not use unstructured cycles, but struc-
tured loops instead, is a heavy burden to put on the business process designer.
Avoiding unstructured cycles, as in our starting model, is often a non-trivial and
complex task.

Fortunately, an automatic transformation of graphs, like the shopping business
process model (Figure 1), into a graph with structured loops (and no unstruc-
tured cycles), is well-known from compiler theory. Two tasks, called T1 and T2,
can be applied non-deterministically until neither is applicable.

The tasks T1 and T2 will reduce the number of activities and control flow,
while expanding the activity nodes from plain activities to become structured
activities. We will use the name property of the activities to represent struc-
tured activities with arbitrarily many repeat-while and if expressions. At the
end we have a single structured activity with no explicit control flow, only hidden

www.manaraa.com

Comparison of Three Model Transformation Languages 5

control flow in the name attribute value (the model with label 5 in Figure 1). It
is straight forward to translate from the hidden control flow of repeat-while
and if expressions in the name attribute of an activity, into plain activities with
explicit control flow, by introducing decision and merge nodes. The end result is
then guaranteed to be unstructured cycle free.

In order to apply a transformation based on the tasks T1 and T2, the source
model must have the following three characteristics: 1) the model contains at
least one unstructured cycle, 2) there is no parallelism, and 3) the model rep-
resents a two-terminal region. A source model is called a two-terminal region
if it has a single initial node and a single final node. Our source model in Fig-
ure 1 satisfies all the three requirements. According to experience at IBM Zurich,
subgraphs with all the three characteristics above, occur frequently in business
process designs [7].

One possible transformation process with the tasks T1 and T2, over four steps,
is shown in Figure 1. A model is displayed with dashed marking for elements that
are replaced in the next transformation step, and Tx=⇒ denotes the application of
task Tx, where x ∈ {1, 2}.

The task T1 replaces cyclic control flow by repeat-while statements. The
task T2 removes an activity with a single predecessor, moves its outgoing control
flows to the predecessor activity, adds an if statement to the predecessor activity,
and introduces a cyclic control flow to the predecessor activity if there is a
"reverse" control flow from the successor to the predecessor. In the application
of task T2 from model 1 to model 2, the Configure activity plays the role
of a successor node with Select as the single predecessor activity. To ensure
that there is at most one control flow in one direction between two activities,
we make a combined control flow with or operators between the guards of the
control flows.

In three following sections we describe an implementation of the tasks T1
and T2 by CGT rules (section 4), AGG rules (section 5), and ATL transforma-
tion modules (section 6). For all the three transformation languages our chosen
strategy is to allow multiple control flows in the same direction between two
activities in the intermediate models, while we define separate rules to combine
multiple control flow edges into one. We do not consider nested activities due
to limited space. The following section covers preliminary information about the
three model transformation languages.

3 Preliminary

AGG uses graph transformation rules consisting of exactly one left hand side
(LHS), a (possibly empty) set of negative application conditions (NACs), and
exactly one right hand side (RHS). The LHS defines a subgraph for which we
are looking for matches within the graph to be transformed. A NAC prevents
application of a rule if the LHS combined with the NAC has a match. None of

www.manaraa.com

6 R. Grønmo, B. Møller-Pedersen, and G.K. Olsen

the NACs can have a match in order to apply a rule. When a rule is matched by
a LHS, then the matched LHS within the source graph is replaced by the RHS
of the matched rule.

The dangling condition [4] ensures that a rule, involving node deletion, is only
applied when there will be no dangling edges in the resulting graph. Identifiers,
displayed with a number followed by a colon, e.g. 1:Activity, are shown in
the rule when there are shared elements between the LHS and the RHS/NACs.
Elements that are shared between the LHS and the RHS are preserved by the
rule. Elements where we have not displayed an identifier, occur either only in
the LHS and will be deleted, or they occur only in the RHS and will be added.

CGT is basically the same as graph transformation, except that rules use con-
crete syntax instead of the abstract syntax. In addition CGT defines a collection
operator which is explained below. In CGT, identifiers are displayed next to the
elements(e.g. id=1), and attribute variables are prefixed with a question mark
(e.g. ?guard1) and displayed in the same position as the attribute within the
concrete syntax.

A collection operator can be used in a graph transformation rule to match a
set of similar subgraphs. In the right part of Figure 2, we see how an activity
model with a redundant decision node can be refactored by combining two guard
expressions with an and operator [5,3]. With plain graph transformation it is not
possible to express the removal of redundant decision nodes with a single rule.
In the left part of Figure 2, a single CGT rule with the collection operator
(dashed line frame) is sufficient to do the refactoring. The collection operator
matches an arbitrary number of subgraphs (the doA and doB branches), removes
a decision node and a merge node, and combines two guards for each subgraph
match.

In the ATL code, transformation modules (hereafter called modules for short)
declare the imported metamodel of the source and target models to be used in a
transformation. Rules are used to implicitly match source elements and produce
target elements, lazy rules are called explicitly to produce target elements based
on source elements, and helpers represent user-defined functions with return
values that does not produce target elements. ATL is built around the Object
Constraint Language (OCL) [10] with some additional predefined functions.

[?guard1] [?guard2]
1..*

[?guard1 ” and ” ?guard2]

1..*

LHS

RHS

[x] doA

doB

[a]

[b]

doA

doB

[x and a]

[x and b]

id=1

id=1

id=2

id=2

id=3

id=3

1

2

Fig. 2. Removing redundant decision nodes

www.manaraa.com

Comparison of Three Model Transformation Languages 7

4 RemoveGOTO by CGT

In Figure 3 we have defined five rules to simulate the tasks T1 and T2. Since
we use the concrete syntax to define the rules, they resemble the transformation
steps from Figure 1.

A single rule is sufficient to simulate the task T1. The LHS expresses that we
are looking for matches of arbitrary activities with a cyclic control flow. id=1
is an identifier of the matched activity, and ?guard is an identifier of the guard
value of the cyclic control flow. The NAC ensures that the matched activity
has exactly one cyclic control flow. The RHS expresses the replacement of the
LHS match, implicitly meaning that the cyclic control flow is removed, and the
activity name is extended with a repeat-while expression.

To simulate the task T2, we define two rules depending on the node type(s)
following the successor activity. Either the next node(s) is the final node or
activity node(s). In both cases a "reverse" control flow going from the successor
activity back to the predecessor activity shall result in a cyclic control flow of
the predecessor activity, where the guards are combined with an and operator. A
collection operator with cardinality 0..1 expresses that such a "reverse" control
flow is either present or not.

For both T2 rules the predecessor activity name is extended by the same
if-expression. For the T2-NextIsFinal rule the predecessor activity gets an

LHS RHS

?A [?guard] <”REPEAT ”
+ ?A +

” WHILE ”
+ ?guard + ”;”>

T1

?A

NAC
[?g2]

[?g1]

[?g2]

RemMultiEdge

RemMultiCircEdge

[?g1] [”(”+?g1+” OR ”
+ ?g2 + ”)”]

[”(” + ?g1 + ” OR ”
+ ?g2 + ”)”]

LHS

RHS

?pre ?succ

<?pre + ” IF ” + ?guard1 +
” ” + ?succ + ” ENDIF;”>

[?guard1]

[”(” + ?guard1 +
” AND ”+ ?rev-g + ”)”]

0..1

[?rev-g]
0..1

T2-NextIsFinal

?pre ?succ
<?pre+” IF ”+ ?guard1+
” ”+ ?succ+” ENDIF;”>

[?guard1]

[”(” + ?guard1 + ” AND ”
+ ?rev-g + ”)”]

0..1

[?rev-g]
0..1

T2-NextIsActivity

?next

[”(” + ?guard1 + ” AND ”
+ ?guard3 + ”)”]

1..*

?next

[?guard3]

1..*

LHS

LHS

LHS RHS

RHS

RHS
id=1

id=1

id=1id=2

id=3

id=1 id=2 id=1 id=2

id=1

id=1

id=1

id=1

id=1

id=1

id=2 id=2

Fig. 3. RemoveGoto: Rules using concrete syntax (CGT)

www.manaraa.com

8 R. Grønmo, B. Møller-Pedersen, and G.K. Olsen

outgoing control flow to the final node. The T2-NextIsActivity is a bit more
complicated. Here we need to move each outgoing control flow of the successor
activity over to the predecessor activity, and the guard of the new control flow
is extended with an and operator between two successive guards. A collection
operator with cardinality 1..* expresses that there are arbitrarily many such
outgoing control flows from the successor activity.

Note that we have not defined a NAC to ensure that the successor activity has
exactly one predecessor activity, since this is ensured by the dangling condition.
Otherwise an additional incoming control flow to the to-be-deleted successor
activity would become a dangling edge.

Finally, we need two simple rules to define: 1) the merging of two cyclic
control flows into one control flow (RemMultiCircEdge), and 2) the merging of
two control flows in the same direction between two distinct activities
(RemMultiEdge). The merged control flow uses an or operator to combine the
guards of the joined control flows.

The two rules to merge multiple control flow rules should always be applied
after each application of a T1 or a T2 rule. However, no specific control flow
ordering of the rules is necessary due to 1) the dangling condition for the two
T2 rules, and 2) the NAC of the T1 rule. The NAC of the T1 rule implies
that the RemMultiCircEdge rule must be applied as long as possible first on
the relevant activity, while the dangling condition on the to-be-deleted successor
activity ensures that the RemMultiEdge rule is applied before the T2 rules.

5 RemoveGOTO by AGG

While the CGT transformations uses the concrete syntax, graph transformations
(such as AGG) uses the abstract syntax. In addition, AGG does not have a
collection operator. Thus, we get several rules for a single CGT rule using the
collection operator. An automated mapping from a CGT rule to AGG rules is
described in our earlier work [3].

We will use the AGG rules that result directly from our mapping of CGT rules
into AGG rules. To be fair to AGG we manually investigated the generated rules
to see if they could be optimized or further improved. No such improvements
were found, and in fact the generated rules were fewer than a previous attempt
where we coded the rules manually in AGG.

We get eight AGG rules (Figure 4 and Figure 5) corresponding to the five
CGT rules. The three CGT rules without collection operators (Figure 5) are
simply translated from concrete to abstract syntax.

The CGT rule, named T2-NextIsActivity, has two collection operators
and is mapped to three transactional rules in AGG. The Iter-1 rule represents
the 0..1 collection with the "reverse" control flow. The Iter-2 rule represents
the 1..* collection with the arbitrary number of outgoing control flow from the
successor activity. The Final rule deletes the successor activity. For both the
iteration rules we get autogenerated NACs to exclude matches when there are
multiple predecessors for the successor activity.

www.manaraa.com

Comparison of Three Model Transformation Languages 9

T2-NextIsFinal-Iter

1: activity
name=pre

3: activity
name=succ

5: finalNode

2: CFflow
guard=guard1

CFflow
guard=rev-g

trg

trg
src

src 4: CFflow
src

LHS

trg

1: activity
name=pre

3: activity
name=succ

5: finalNode

2: CFflow
guard=guard1

CFflow
guard=”(”+guard1+

” AND ”+ rev-g+”)”

trg

src

src

4: CFflow
src

RHS

trg

trg

T2-NextIsFinal-Final

1: activity
name=pre

LHS RHS
CFflow
guard=guard1

2: finalNode

activity
name=succsrc

trg

CFflow trg

src
1: activity

name=pre+” IF ”+guard1+
” ”+succ+” ENDIF;” 2: finalNode

CFflow
trg

src

trgNAC 3: activity
name=succ

CFflow
guard=g0

T2-NextIsActivity-Final

1: activity
name=pre

LHS RHS
CFflow
guard=guard1

activity
name=succ

src trg
1: activity
name=pre+” IF ”+guard1+

” ”+succ+” ENDIF;”

T2-NextIsActivity-Iter-1

1: activity
name=pre

3: activity
name=succ

2: CFflow
guard=guard1

CFflow
guard=rev-g

trg

trg src

src

LHS

1: activity
name=pre

3: activity
name=succ

2: CFflow
guard=guard1

CFflow
guard=”(” + guard1

+ ” AND ”
+ rev-g+”)”

trg

src

src

RHS

trg

trgNAC 3: activity
name=succ

CFflow
guard=g0

T2-NextIsActivity-Iter-2

1: activity
name=pre

3: activity
name=succ

2: CFflow
guard=guard1

trg
src

LHS

trg

RHS

trgNAC 3: activity
name=succ

CFflow
guard=g0

4: activity
name=next

CFflow
guard=guard3

src
1: activity
name=pre

3: activity
name=succ

2: CFflow
guard=guard1

trg

src
trg

4: activity
name=next

CFflow
guard=”(”+guard1

+” AND ”+
guard3+”)”

src

Fig. 4. RemoveGoto: Rules using abstract syntax - part 1 (AGG)

The CGT rule, named T2-NextIsFinal, has one collection operator and is
mapped to two transactional rules in AGG. The T2-NextIsFinal-Iter rule will
replace a "reverse" control flow by a cyclic control flow of the predecessor activity,
and it gets a NAC to prevent multiple predecessors. The T2-NextIsFinal-Final
rule deletes the successor activity.

We need additional Java code to control the rule application order. The set of
rules (e.g. T2-NextIsFinal-Iter and T2-NextIsFinal-Final) corresponding
to a single rule with collection operators shall be applied as one transactional
group The Iter rules are applied first and at least the minimum cardinality

www.manaraa.com

10 R. Grønmo, B. Møller-Pedersen, and G.K. Olsen

1: activity
name=A

2: CFflow
guard=guard

LHS 1: activity
name="REPEAT ”+A+

" WHILE ”+guard+";"

RHStrg
1: activity
name=A

3: CFflow
guard=guard2

src

NAC
T1

trg

src

1: activity
name=A

2: activity
name=B

src trg

LHS CFflow
guard=g1

CFflow
guard=g2

src trg
1: activity
name=A

2: activity
name=B

src trg

RHS
CFflow
guard=”(”+g1+

” OR ”+g2+”)”

RemoveMultiEdge

1: activity
name=A

LHS
CFflow
guard=g1

CFflow
guard=g2

1: activity
name=A

srcRHS
CFflow
guard=”(”+g1+” OR ”+ g2+”)”

RemoveMultiCircEdge

src

trg

src

trg trg

Fig. 5. RemoveGoto: Rules using abstract syntax - part 2 (AGG)

number of times, and as long as possible (or up to the maximum cardinality if
it is different from ∗). The Final rule must then be applied.

6 RemoveGOTO by ATL

We use three ATL modules to accomplish the removeGOTO task: T1, T2 and
RemMultiEdges. The T1/T2 module performs the task T1/T2 with the simpli-
fication also used by CGT and AGG to allow creation of multiple control flow
in the same direction between two activities, and to allow creation of multiple
circular control flows for the same activity. The RemMultiEdges module removes
all such multiple control flow edges. Since the removeGOTO transformation is a
refactoring task, the target model should keep all the unchanged parts from the
source model. This is achieved by using the publicly available UML2Copy.atl
module [15] that has rules to copy all UML source elements into the target
model. Our three modules are then superimposed on the UML2Copy in order to
override only the rules where things are changed.

Due to limited space we have made some abbreviations in the ATL code
listings: UML2! is skipped as prefix on metamodel types, Action instead of
UML2!CallOperationAction, CFlow instead of UML2!ControlFlow, LString in-
stead of UML2!LiteralString, Node instead of UML2!ControlNode, and
thisModule is skipped as prefix when calling helper functions. We have also left
out a few rules, all the helpers implementation code in the RemMultiEdges and
T2 modules, and left out a large number of attributes that should be copied from
the source to the target. We discuss some of these details after the code extracts
of the modules are presented.

The T1 module consists of one main rule, Action, where we produce a repeat-
while statement in the Action name, for each circular control flow. The T1
module will remove all circular control flow at once, and thus corresponds to

www.manaraa.com

Comparison of Three Model Transformation Languages 11

multiple applications of the T1 rule of CGT/AGG. A precondition for calling
T1 is that there is at most one circular control flow of each Action element.
This precondition is ensured by calling the RemMultiEdges module after each
application of a T1 or T2 module.

Listing 1.1. ATL code extract from the T1 module

rule Action { from s : Action to t : Action (
name <− i f s . incoming−>exc lude sA l l (s . outgoing)

then s . name
else ’REPEAT ’ + s . name + ’ WHILE ’ +

loopGuard (s) + ’ ; ’ endif) }

helper def : loopGuard (act : Action) : String =
act . incoming−>asSet ()−> i n t e r s e c t i o n (act . outgoing)−>

asSequence()−> f i r s t () . guard . va lue ;

The RemMultiEdges module (not listed due to limited space) removes all
multiple control flow occurrences, both circular and non-circular. In the main
rule, Activity, we calculate all combinations of two activity nodes (n1,n2),
where n1 and n2 may be the same node. If there exists a control flow edge between
these two nodes, then a single, possibly combined control flow is produced from
n1 to n2 by a call to the rule makeOneEdge. The combined control flow uses an
or operator between the guards from the replaced multiple control flows.

The T2 module defines the Action rule to ignore successor nodes from the
target model (guarded by not isSucc(s)). For the remaining Action elements,
the name is kept unchanged if the Action source object is different from the
predecessor node, and for predecessors the original name is replaced by an if-
statement. If the "reverse" control flow exists from successor to predecessor,
then an explicit call to the circEdge rule produces a circular control flow for
the predecessor activity . All other outgoing control flows of the successor activity
are moved over to the predecessor node, with extended guard values, by calls
to the newNextEdge rule. Both the circEdge and newNextEdge lazy rules call
on associated rules (circGuard and nextGuard) for combining guards by and
operators.

The T2 module uses the helper functions for which the signatures are shown
in the listing below. It is important to stress that we cannot safely apply the task
T2 on multiple matches at the same time. We need to ensure that at most one
node is treated as predecessor and at most one node is treated as successor. We
use the predefined ATL method indexOf to get a unique index of each activity,
and we choose only the successor with the lowest index. There is no rationale
behind this choice except to ensure that we get only one successor activity, and
then the rules also ensure that we get a single predecessor activity.

Since all the three modules deletes some of the source control flow, we need
CFlow rules to override the default behavior of copying all the the CFlow. In the

www.manaraa.com

12 R. Grønmo, B. Møller-Pedersen, and G.K. Olsen

Listing 1.2. ATL code extract from the T2 module

edge <− s . edge−>s e l e c t (c f | i sSucc (c f . source)
and r o l e (c f . t a r g e t) <> ’ pre ’)
−>c o l l e c t (c f | newNextEdge (c f))) }

rule Action { from s : Action (not i sSucc (s)) to t : Action (
name <− i f r o l e (s) = ’ pre ’ then s . name+’ IF ’

+guardPreToSucc (s)+ ’ ’+succName (s)+ ’ ENDIF; ’
else s . name endif) }

lazy rule c i rcEdge { from revCF : CFlow to t : CFlow (
source <− revCF . target , t a r g e t <− revCF . target ,
guard <− circGuard (revCF . t a r g e t)) }

lazy rule circGuard { from pre : Action to guard : LStr ing (
va lue <− ’ (’ + guardPreToSucc (pre)+ ’ AND ’

+ guardSuccToPre (pre) + ’) ’)}

lazy rule newNextEdge { −− move edge from succ to pre

from toNext : CFlow to t : CFlow (
source<−toNext . source . incoming−>f i r s t () . source ,−− pre

t a r g e t <−toNext . target , −− next

guard <− i f toNext . guard . oc l I sUnde f ined ()
then OclUndefined
else nextGuard (toNext) endif)}

lazy rule nextGuard { from next : CFlow to guard : LStr ing (
value<− ’ (’ + next . source . incoming−>f i r s t () . guard . va lue

+ ’ AND ’ + next . guard . va lue + ’) ’) }

rule Act iv i ty { from s : Ac t i v i ty to t : Ac t i v i ty (
name <− s . name , node <− s . node , edge <− s . edge ,
−− c i r c u l a r pre edge i f edge from succ to pre

edge <− s . edge−>s e l e c t (c f | i sSucc (c f . source) and
r o l e (c f . t a r g e t) = ’ pre ’)

−>c o l l e c t (c f | c i rcEdge (c f)) ,
−− outgo ing edges o f succ i s moved to pre

listing below we show how the T1 module adds a rule guard to ignore circular
control flow. Similarly for the string value (called LString) of the corresponding
control flow guard, we need to avoid producing target elements.

As a shortcut in our code we have assumed that all guard values are registered
as literal strings, while in general there are a number of possibilities. While these
are treated generically in CGT and AGG, we need additional rules (similar to
LString) to handle all these other value types (e.g. integer, boolean, time).

www.manaraa.com

Comparison of Three Model Transformation Languages 13

Listing 1.3. Helpers from the T2 module

helper def : succName (pre : Action) : String = . . .
helper def : guardSuccToPre (pre : Action) : String = . . .
−− each ac t i on element has a unique index

helper def : nodeIndex (a : Action) : I n t eg e r = . . .
helper def : noLowerIndexSucc (a : Action) : Boolean = . . .

−− The r o l e o f a node i s ’ pre ’ , ’ succ ’ or ’ o ther ’ .

helper def : r o l e (a : Action) : String = . . .
−− match only the l owe s t indexed succ node

helper def : i sSucc (a : Action) : Boolean = . . .
−− re turns t rue f o r a l l cand ida te succ nodes

helper def : isWeakSucc (a : Action) : Boolean = . . .
helper def : guardPreToSucc (pre : Action) : String = . . .

For the module RemMultiEdges to combine multiple control flow edges into
one, the guard of CFlow and associated LString is set to false. This is because
no source control flow is preserved and all the resulting control flow is explicitly
produced. The guard of the rule CFlow in the module T2 ensures that control
flow connected to the to-be-deleted successor activity is omitted in the target
model.

Listing 1.4. CFlow and LString rules in the T1 module

rule CFlow{from s : CFlow (s . source <> s . t a r g e t) to t : CFlow
(−− copy a l l a t t r s) }

rule LStr ing { from inGuard : LStr ing
(not (inGuard−>parent () . oc l IsTypeOf (CFlow)) or
(inGuard−>refImmediateComposite () () . source <>
inGuard−>refImmediateComposite () () . t a r g e t))

to outGuard : LStr ing (−− copy a l l a t t r s) }

The ATL code listings are simplified because we need to copy all the source
element properties (e.g. Activity has 46 properties and ControlFlow has 14
properties), just like UML2Copy already does. This could be avoided if there was
a way to execute the existing body of the superimposed rule, but this is not pos-
sible. Inheritance can only be achieved on rules within the same transformation
module. The same problem does not occur with CGT/AGG since unmatched
elements and properties are preserved by default.

The three modules must be invoked in a controlled manner. The modules
T1 and T2 must be applied as long as possible, but after each application of
T1 or T2, we have to call the module RemMultiEdges before we continue. This
module application order is shown in Figure 6. The ATL transformation modules
can be invoked from Java code, and it is trivial to translate the control flow in

www.manaraa.com

14 R. Grønmo, B. Møller-Pedersen, and G.K. Olsen

T1

RemMulti
Edges

T1T2

T2[choice=”t1”]

[choice=”t2”]

[t1 not applied]

[t2 not applied]

[else]

[else]

[no rule
applied]

[else]

loop

Fig. 6. Control flow of ATL transformations

Figure 6 into Java code by using if statements for the decision nodes, and a
do-while statement for the outer loop. The data flow is omitted from the figure,
but basically each transformation module takes an activity model as input and
returns an activity model as output. In addition there will be some data objects
involved to test if a transformation module has been applied or not. This can be
achieved in many ways, for instance checking if the number of control flow edges
are reduced by T1, or if the number of activities are reduced by T2.

7 Discussion

Our paper example can be compared with respect to the amount of code or
models that a programmer or modeler needs to specify in order to make an exe-
cutable solution. While the CGT solution is expressed with half a paper page of
graphical models, the AGG solution needs one page of graphical models. In addi-
tion AGG needs rule application order code to ensure the transactional behavior
of the iteration/final rules. The ATL solution (excluding the UML2Copy.atl)
would use about 4,5 pages (160 code lines without empty lines and comments)
of textual code without the rule application order code, and without the copying
of unchanged attributes which would make the complete ATL solution several
pages longer. So, CGT is much better than AGG, and AGG is much better than
ATL with respect to the solution size.

The usage of the collection operator in the concrete syntax of CGT raises
the level of abstraction compared to the collection free AGG rules. This is why
we get fewer rules in CGT than in AGG. The ATL solution gets very large
compared to CGT/AGG since we need: 1) to copy all the unchanged properties
of elements that are modified, 2) several helper methods to ensure that the T2
module matches only one activity as a predecessor and only one activity as the
successor for each application (otherwise the result may be corrupted).

CGT appears to be more intuitive since it uses the concrete syntax of activity
models which is already familiar to the modeler. Even though AGG is graphical,
it takes more time to understand what the diagrams express since they are
defined on the abstract syntax. It is clearly a benefit for a modeler to define an
activity model by using a concrete syntax-based editor. The same benefit applies
when rules are defined as model extracts in LHS/RHS.

www.manaraa.com

Comparison of Three Model Transformation Languages 15

The transformation modeler does not need to know anything about the repre-
sentation of the UML activity metamodel when defining CGT rules, while access
to and knowledge of the metamodel and the abstract syntax is essential when
using AGG or ATL. This largely increases the overall complexity of using AGG
and ATL compared to CGT. While a control flow is simply drawn in CGT as
within activity models, the modeler need to know how a control flow is repre-
sented in AGG and ATL. In AGG we represented a control flow with a node
of type CFlow, and two outgoing edges labeled src and trg going to the source
and target nodes of the control flow. In the UML 2 metamodel we used in ATL,
the incoming and outgoing properties of the activity node provides the set of
incoming and outgoing control flow references.

ATL has additional weaknesses compared to CGT and AGG for refactoring
transformations like the paper example. While CGT and AGG defines only the
changes to the source model, and preserves all the unchanged parts by default,
this is very cumbersome in ATL. In the ATL 2006 version, a refining mode was
introduced, with the intention to preserve unchanged parts. But it currently has
limitations and does not behave as expected. We still have to define a copy mod-
ule with default copying of all elements. With UML, one was publicly available
(UML2Copy.atl), which saved a lot of effort, but this will generally not be the
case. Upon this copy module, we need to superimpose our actual module. In
ATL there is no way to change only a few properties of an element, and to keep
the other attributes unchanged. All the properties must be explicitly listed. This
is because we cannot use inheritance combined with superimposition.

With refactoring it is useful to apply a set of rules for as long as possible. This
is directly supported by CGT and AGG, but not by ATL.

CGT is one configuration of concrete syntax-based graph transformation, and
its implementation has been hard coded. Full support for concrete syntax-based
graph transformation to support general model transformations requires more
tool implementation and also some initial configuration where the user defines
the relation between the concrete and abstract syntax of the source/target lan-
guage. Thus, AGG and ATL have a benefit, compared to concrete syntax-based
graph transformation, by having existing tools that support general model trans-
formations.

We have developed a proof-of-concept Eclipse GMF-based [2] rule editor for
the configuration of CGT where activity models is the source and target language
[3]. The transformation from CGT to AGG rules has been implemented using
the MOFScript language [8]. We have not implemented the transactional support
needed to generally ensure a correct simulation of the collection operator. In the
removeGOTO solution it was sufficient to add a few NACs, and to apply all the
rules non-deterministically.

For the ATL code implementation of the removeGOTO solution, we did not
implement the Java code to control rule application order, but tested several
orders manually. The generated AGG rules, and the ATL rules were tested suc-
cessfully on four different models including the source model of Figure 1.

www.manaraa.com

16 R. Grønmo, B. Møller-Pedersen, and G.K. Olsen

8 Related Work

Strommer et al. [14] also aim at using the concrete syntax of the source and target
languages to define model transformations. Our transformation definitions are
completely defined upon the concrete syntax, while they generate a starting
point that must be further modified and extended within the ATL language and
the abstract syntax of the source and target.

The removeGOTO problem used in this paper is taken from Koehler et al.
[7]. They have an OCL-based solution to the problem, which has many of the
same drawbacks that ATL has. In addition pure OCL tends to be more compli-
cated than ATL since the rule construct of ATL and additional functions is an
improvement over pure OCL.

The TIGER tool [1] and the MATA tool [17] use concrete syntax in their
transformation rules. These rules are then mapped to abstract syntax rules that
are executed in a traditional graph transformation tool. As opposed to our ap-
proach, the focus with TIGER and MATA seems so far to be restricted to model
transformations where the source and target languages are the same. Neither
TIGER nor MATA support a similar concept as the collection operator.

9 Conclusions

In concrete syntax-based graph transformation, the transformation modeler can
concentrate on rules directly within the familiar concrete syntaxes of the source
and target modeling languages. With AGG and ATL, on the other hand, the
transformation modeler must master several related languages: 1) the concrete
syntax of source and target, 2) the metamodel of source and target, and 3) the
abstract syntax of source and target.

This paper presents three solutions (in CGT, AGG, and ATL) to a fairly
complicated refactoring example of activity models. The conclusion is that CGT
in this case requires less effort and is the most concise solution of the three. In
addition to the usage of concrete syntax, the usage of a collection operator is the
reason why CGT outcompetes the other two. The collection operator can also
be used on the abstract syntax of traditional graph transformation, which would
reduce the disadvantage of using traditional graph transformation like AGG.

Concrete syntax-based graph transformation (with the collection operator)
is at a higher level of abstraction than traditional graph transformation and
model transformation. While this is a benefit for the users, it also requires more
tools and infrastructure than is available today. As a simplified view, the missing
infrastructure can be seen as a compiler that translates concrete syntax rules into
abstract syntax rules. For each new combination of source and target, the user
also needs to define the relationship between abstract and concrete syntax which
is not needed in the traditional approaches. It is a future goal to implement full
tool support for CGT.

Acknowledgment. The work reported in this paper has been funded by The
Research Council of Norway, grant no. 167172/V30 (the SWAT project), and by
the DiVA project grant no. 215412 (EU FP7 STREP).

www.manaraa.com

Comparison of Three Model Transformation Languages 17

References

1. Biermann, E., Ermel, C., Hurrelmann, J., Ehrig, K.: Flexible visualization of auto-
matic simulation based on structured graph transformation. In: IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC (2008)

2. Eclipse Consortium. Eclipse Graphical Modeling Framework (GMF) (2007),
http://www.eclipse.org/gmf

3. Grønmo, R., Møller-Pedersen, B.: Aspect Diagrams for UML Activity Models. In:
Applications of Graph Transformations with Industrial Relevance. LNCS. Springer,
Heidelberg (2008)

4. Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited.
Mathematical Structures in Computer Science 11(5), 637–688 (2001)

5. Eder, J., Gruber, W., Pichler, H.: Transforming Workflow Graphs. In: Proceedings
of the First Int. Conf. on Interoperability of Enterprise Software and Applications
(INTEROP-ESA) (2005)

6. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

7. Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Declarative techniques for model-
driven business process integration. IBM Systems Journal 44(1) (2005)

8. Oldevik, J., Neple, T., Grønmo, R., Aagedal, J.Ø., Berre, A.-J.: Toward stan-
dardised model to text transformations. In: Hartman, A., Kreische, D. (eds.)
ECMDA-FA 2005. LNCS, vol. 3748, pp. 239–253. Springer, Heidelberg (2005)

9. OMG. OMG’s MetaObject Facility, http://www.omg.org/mof/
10. OMG. UML 2.0 OCL Specification, OMG Adopted Specification ptc/03-10-14

(October 2003)
11. OMG. UML 2.0 Superstructure Specification, OMG Adopted Specification ptc/03-

08-02 (August 2003)
12. Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A.H.M.: Translating Standard

Process Models to BPEL. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 417–432. Springer, Heidelberg (2006)

13. Skogan, D., Grønmo, R., Solheim, I.: Web Service Composition in UML. In: IEEE
Intl. Enterprise Distributed Object Computing Conf. (EDOC) (2004)

14. Strommer, M., Wimmer, M.: A framework for model transformation by-example:
Concepts and tool support. In: Objects, Components, Models and Patterns
(TOOLS). LNBIP. Springer, Heidelberg (2008)

15. System and Software Engineering Lab, Vrije Unversiteit Brussel, Belgium. MDE
Case Studies, http://ssel.vub.ac.be/ssel/research:mdd:casestudies

16. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Applications of Graph Transformations with Industrial
Relevance (AGTIVE) (2003)

17. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: A
Unified Approach for Composing UML Aspect Models based on Graph Trans-
formation. Transactions on AOSD - Special Issue on Aspects and Model-Driven
Engineering (2008) (in press)

http://www.eclipse.org/gmf
http://www.omg.org/mof/
http://ssel.vub.ac.be/ssel/research:mdd:casestudies

www.manaraa.com

On the Use of Higher-Order Model
Transformations

Massimo Tisi1, Frédéric Jouault2, Piero Fraternali1,
Stefano Ceri1, and Jean Bézivin2

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione
Milano - Italy

{massimo.tisi,piero.fraternali,stefano.ceri}@polimi.it
2 INRIA, Centre Rennes - Bretagne Atlantique

Nantes, France
{frederic.jouault,jean.bezivin}@inria.fr

Abstract. The level of maturity that has been reached by model trans-
formation technologies is proved by the growing literature on transforma-
tion libraries that address an increasingly wide spectrum of applications.

With the success of the modeling and transformation paradigm, the
need arises to address more complex applications that require a direct
manipulation of model transformations.

The uniformity and flexibility of the model-driven paradigm allows
this class of applications to make use of the same transformation infras-
tructure. This is possible because transformations can be translated into
transformation models and given as objects to a different class of model
transformations, called Higher-Order Transformations (HOT).

This paper provides an introduction to HOTs and a survey of the
several application cases where their use is relevant. A number of possible
future applications of HOTs is also proposed.

1 Introduction

The popularity of Model-Driven Engineering (MDE) is continuously growing and
the reason behind this increasing success is mainly technological: a set of automa-
tion frameworks, built around model transformation technologies, are reaching
a good level of maturity. This maturity is related to two important technological
drivers. At first, common recognized formalisms (e.g. MOF, Ecore, KM3[23])
have allowed the explicit characterization of several metamodels; then more and
more libraries of transformations have started to gather reusable model trans-
formations expressed in declarative rule-based languages (e.g. QVT, ATL[24]).

The evolution of model-driven environments since its first steps can be out-
lined distinguishing three phases. In a first phase, early MDE tools were limited
to assistance in drawing models, sometimes reverse-engineering them from ex-
isting code, and to generation of structural skeleton of programs from diagrams.
Such limited approaches were relegating models to the role of mere program
documentation, difficult to maintain, with a cost that was not clearly justified
by a tangible improvement in software quality.

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 18–33, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

On the Use of Higher-Order Model Transformations 19

The second phase saw an increasing success of model transformation technolo-
gies to automate forward engineering and several other software development
activities. Automation is among the most appealing means to reduce costs and
increase productivity. While the idea of automating the generation of a signifi-
cant part of the program code accompanies MDE since its first steps, the success
of code generation only started when it was able to produce code whose efficiency
was comparable to hand-crafted code. Since that moment, the use of models in
software development started to become much wider than their role as drivers
of the implementation. Once models become an integral part of the software
engineering process, there is no reason not to exploit the same transformation
infrastructure to automate other tasks. This lead to the development of a vast
library of transformations to accomplish several activities automatically, such as
metrics evaluation, testing, generation of documentation.

Finally in a third phase, while models and transformations are still a central
part of the software development process, they start to become also an inte-
gral part of the developed system. Model-based software systems appear, where
models and model transformations are first-class elements of the runtime archi-
tecture, together with data structures and programs. In these systems, models
are used to represent several heterogeneous types of information. They can be
handled natively at runtime, and system logic can be represented by complex
transformation workflows.

It is especially in this third phase that the idea of transformation manipu-
lation naturally arises. As part of the developed system, transformations can
be themselves generated and handled by model-driven development, exactly like
traditional programs. While transformation manipulation can be performed by
means of an independent methodology (e.g., program transformation, aspect ori-
entation), the elegance of the model-driven paradigm allows again the reuse of
the same transformation infrastructure. To achieve this objective, the concept of
model transformation needs to be extended with that of transformation model
[11]. The transformation is represented by a transformation model that has to
conform to a transformation metamodel. Just as a normal model can be cre-
ated, modified, augmented through a transformation, a transformation model
can itself be instantiated, modified and so on. This uniformity is beneficial in
several ways: especially it allows reusing tools and methods, and it creates a
framework that can in theory be applied recursively (since transformations of
transformations can be transformed themselves).

Once the boundary between development-time transformations and execution-
time transformations is weakened, a wide set of application patterns appear that
involve transformation models in the roles of both manipulation program and
manipulated object. This paper provides a first survey and classification of these
applications and the related transformation patterns.

The rest of the paper is organized as follows: Section 2 introduces definition
and structure of higher-order transformations, i.e. transformations of transfor-
mations; Section 3 presents the outline of the classification and the main trans-
formation types; Section 4, 5, 6 and 7 describe the four main areas in which

www.manaraa.com

20 M. Tisi et al.

the survey is divided, namely transformation synthesis, analysis, composition
and modification; Section 8 suggests other applications that can be addressed in
future by higher-order transformations; Section 9 draws the conclusions.

2 Higher-Order Transformations

An essential prerequisite for fully exploiting the power of transformations is their
treatment as objects. This demands the representation of the transformation as
a model conforming to a transformation metamodel.

name : String
UnitLibraryRef

name : String

Module
isRefining : Boolean

Library Query

ModuleElement

HelperRule
name : String

superRule
0..1

0..*

children

CalledRule
isEntrypoint : Boolean

MatchedRule
isAbstract : Boolean
isRefining : Boolean

InPatternInPatternElement

propertyName : String
Binding OutPatternElement

OutPattern

ActionBlockStatement

RuleVariableDeclaration

Fig. 1. Simplified version of the ATL Metamodel

Not all transformation frameworks provide a transformation metamodel. In
this work we will mainly refer to the AmmA framework [27] that contains a
mature implementation of the ATL transformation language. Within AmmA an
ATL transformation is itself a model, conforming to the ATL metamodel. Figure
1 shows the main classes of the ATL metamodel. Besides the shown elements
like the central classes of Rule, Helper, InPattern, and OutPattern, the ATL
metamodel also incorporates the whole OCL metamodel to represent expressions
on the manipulated models.

Once the representation of a transformation as a transformation model is
available, a HOT can be defined as follows:

Definition 1 (Higher-order transformation). A higher-order transforma-
tion is a model transformation such that its input and/or output models are
themselves transformation models.

www.manaraa.com

On the Use of Higher-Order Model Transformations 21

According to this definition HOTs either take a transformation model as input,
produce a transformation model as output, or both. An example of a HOT in
the AmmA framework is shown in Figure 2. This example reads and writes a
transformation, e.g. with the purpose of performing a refactoring. The three
operations shown as large arrows at level M1 (Models) are:

– TCS Injection. The textual representation of the transformation rules is read
and translated into a model representation. This example uses for this step a
generic program that is parametrized with a model representing the concrete
syntax of the ATL language. The Textual Concrete Syntax is described in
AmmA by means of the TCS formalism [22]. The generated model is an
instance of the ATL metamodel (Figure 1).

– HOT. The transformation model is the input of a model transformation
that produces another transformation model. The input, output and HOT
transformation models are all conforming to the same ATL metamodel.

– TCS Extraction. Finally an extraction is performed to serialize the output
transformation model into a textual transformation program.

Note that the injection and extraction operations are not always used during a
HOT. For instance, the source transformation model may come from a previous
step, and already be in the form of a model. Similarly, the target transformation
model is sometimes reused as a model without an immediate serialization.

Fig. 2. A typical example of Higher-Order Transformation

3 A Survey of Higher-Order Transformations

The next sections are an overview of the literature on model transformations
that involve the use of HOTs for specific tasks.

This survey comprises all publications known to us that are related to HOTs
in the ATL language. ATL appears to be the preferred language for HOTs de-
velopment to date, and we were able to gather a set of 44 transformations from

www.manaraa.com

22 M. Tisi et al.

previous work. We add to this set other notable examples of HOTs in other
frameworks. Most of the described model transformations are freely available
and highly reusable. They constitute a first comprehensive library of HOTs.

The survey is organized in a two-level hierarchy. The first level is focused on
the identification of base transformation patterns, each of them representing the
usage pattern of a given class of HOTs. In the second level, each one of the base
groups is further divided by considering different variants of the patterns.

We identified four transformation patterns that are shown in Figure 3. These
patterns include the following models: the HOT, its input and output models
and the input and output models of the transformations that are handled by the
HOT. Models are included together with their respective metamodel and they
are linked by the following associations: the conforms-to relationship between
a model and its metamodel (represented as a thin arrow), and the transforms
relationship between a transformation and its output and input models (rep-
resented as thick arrows). The transforms arrows of the HOTs are shown in a
darker shade of gray. The four base patterns are:

Fig. 3. Base HOT patterns: a) Transformation synthesis, b) Transformation analysis,
c) Transformation composition (decomposition not shown), d) Transformation modifi-
cation

www.manaraa.com

On the Use of Higher-Order Model Transformations 23

Transformation Synthesis. (Section 4) is the common pattern for HOTs that
generate transformations from different information sources. These HOTs are
defined by two conditions: 1) the output model is a transformation; 2) the
input models, if present, are not transformations;

Transformation Analysis. (Section 5) is the pattern for HOTs that take
transformations as input, to generate different kinds of data, in the form
of output models. More precisely: 1) they have a transformation as input
model; 2) they do not have transformations as output models.

Transformation (De)composition. (Section 6) is the pattern for HOTs that
take multiple transformations as input (composition) and/or output (decom-
position). Three conditions define these HOTs: 1) at least one of the input
models must be a transformation; 2) at least one of the output models must
be a transformation; 3) the input and/or output models must contain more
than one transformation.

Transformation Modification. (detailed in Section 7) is the pattern for
HOTs that take a transformation as input and generate a modified version
of the same transformation. These HOTs must have: 1) one transformation
as input; 2) one transformation as output.

Additional input or output models are allowed for all the previous HOTs,
with the condition that they are not transformation models.

4 Transformation Synthesis

All the cases of transformation synthesis in our survey can be inserted in one
of the following sub-classes: 1) mapping implementation, i.e. the generation of
an executable version of an abstract mapping; 2) generic metamodel, i.e. the
construction of transformations that are generic with respect to the input or
output metamodel.

4.1 Mapping Implementation

The semantics of a transformation language, while representing an abstract map-
ping between metamodels, needs to be concrete enough to allow a direct execu-
tion in a transformation engine. For a set of practical applications this level of
abstraction is not sufficient and a higher-level specification is preferred. A more
abstract mapping has advantages in terms of readability and manageability and
can provide useful features that may not be in the transformation language,
such as bi-directionality. However the non-executable representation needs to
be translated into an executable transformation. This is a typical application
of HOTs. We refer to this class of HOTs with the term mapping implemen-
tation, since the abstract representation can be considered as the higher-level
specification of a mapping that needs to be implemented as a transformation.

In [15] a practical use case for mapping implementation HOTs is deeply stud-
ied. The motivating scenario is enabling tool interoperability between different
bug-tracking systems. Two autonomous software development companies that

www.manaraa.com

24 M. Tisi et al.

need to collaborate rely on different bug-tracking systems and they need an
import/export mechanism between their bug-tracking metadata. A declarative
correspondence model is semi-automatically generated by the analysis of the
metamodels used by the two systems. The correspondence model represents a
set of relationships between model elements. To address the problem of the
possibly infinite kinds of relationships between source and target elements, the
authors use an extension mechanism. The supported links are classified in three
major groups: similarity expressions (e.g., equivalence of model elements), map-
ping expressions (e.g., one-to-many, many-to-one or many-to-many relationships
between source and target model elements) or data-value expressions that in-
volve values of related attributes (e.g., the relationship between the values of the
status attribute for a bug request in the two systems). Finally a HOT translates
this representation in an executable transformation.

The same authors provide another example of this approach in [7]. Using
AMW (i.e. a model that represents generic correspondences between models
[29]) and an ATL HOT it is possible to generate two model transformations that
translate a KM3 metamodel in the SQL DDL and vice versa. In this example
the HOT takes as input a AMW weaving model (i.e. a correspondence model)
between a KM3 metamodel and a SQL DDL metamodel. The weaving model
defines a correspondence between metamodel classes and tables on a database.
This model is then used to produce the two implementation transformations for
bidirectional translation.

HOTs to translate an AMW correspondence model into an implementation
are provided also in [1]. This example contains an extension of the core weaving
metamodel to specify correspondences from a metamodel with flat structures
and foreign keys relationships (as in relational databases) to a metamodel that
contains nested structures (as in XML). The two proposed HOTs generate re-
spectively an ATL and an XSLT executable version of the AMW specification.

The same general schema is followed by:

– [25] that addresses the issue of adapting a model to an evolving metamodel;
– DUALLy [28], an automated framework that allows architectural languages

and tools interoperability;
– the MML2MMR transformation in [20] for studying the integration of

DoDAF [5] metamodels and models.

In all these cases an AMW mapping that correlates two different metamodels
is translated into two transformations at model level (one for each direction of
the mapping). Each AMW link corresponds to one or more rules or helpers in
the generated transformations. [16] provides an abstract specification of several
transformations. Among them, the patchgen transformation is the specification
of the previous transformation group.

[14] presents an alternate representation for differences between models that
conform to the same metamodel. In this proposal the difference model conforms
to a new metamodel that is derived from the input metamodel using a model
transformation. This transformation specializes the metaclasses of the input
metamodel in three subclasses: for each class ClassName an 1) AddedClassName,

www.manaraa.com

On the Use of Higher-Order Model Transformations 25

a 2) DeletedClassName and a 3) ModifiedClassName are introduced. The in-
stances of these metaclasses represent all the differences between the analyzed
models. In this case too, starting from the difference representation, the authors
use a HOT to derive an ATL implementation (they call this implementation
difference animation).

Ecore2RDF [19] is a bridge between the EMF and SemanticWeb technical
spaces. A custom mapping metamodel, which extends the whole ATL metamodel
by adding novel constructs, is the core formalism of this solution. Two HOTs
generate the two directions of the mapping.

Mapping implementations are common also outside the ATL environment.
For instance WebRatio[8] is a modeling environment for the WebML domain-
specific language that allows the generation of a Web application from structure
and navigation models. WebRatio includes a tool called EasyStyle to generate
the presentation of Web pages. EasyStyle is based on a XSLT HOT which takes
as input an HTML template annotated with custom tags, i.e. placeholders for
the content elements of the page. The XSLT HOT translates this HTML file
into another XSLT transformation that generate pages conforming to that tem-
plate. This application is not different from the previous ones, since the HTML
template can be considered as a mapping that relates the elements of the input
model (the Web application model) with the elements of the output model (the
page layout model).

4.2 Generic Metamodels

Several application cases require the development of generic model transforma-
tions that need to take as input or output a metamodel that is not known a priori.
The typical solution in these cases is using HOTs for the on-the-fly generation of
those model transformations that could not be easily developed manually with
a sufficient generality.

For instance the proposal in [18] includes a HOT that takes a KM3 metamodel
as source model and generates a transformation for conflict detection. The output
transformation takes two source models (an implementation and an architecture
model) that conform to the same metamodel and generates a target model that
is the union of the two source models with each of the model elements labeled
convergent, divergent or absent depending on their occurrence in one or both of
the architecture and implementation models.

The need to use a HOT in this case is related to the limitations of the ATL
language. The expressing power of ATL (at least in its declarative form) does not
allow the direct development of a generic conformance checking transformation.
For instance a specific input and output metamodel needs to be specified at
development time. The reflectivity features of declarative ATL are not enough
to outflank the problem (an alternative using imperative ATL is possible but not
painless). This limitation is shared by several other transformation languages.

An analogous problem is presented in [6], where the HOT is used to generate
a generic copier for models conforming to a metamodel that is only known at
runtime. [12] presents an alternative implementation of the model copier as a

www.manaraa.com

26 M. Tisi et al.

HOT based on the transformations in [36] and applied to product lines. In this
case a so-called configuration is obtained by a copier transformation that selects
only a subset of the elements of an extremely generic default model. To keep
the genericity with respect to the configuration metamodel, a HOT dynamically
generates the copier.

In [10] the authors develop a set of transformations to bridge models ex-
pressed in the Microsoft DSL framework to the Eclipse Modeling Framework. A
first sequence of transformations performs the bridging at M2 level, translating
metamodels between the two frameworks. A second set deals with the models.
The last step of this process is a transformation that needs to build models
conforming to the metamodel generated in the first step. Knowledge about this
metamodel is available only at runtime and can not be embedded into the last
transformation. In the proposed solution the last transformation is dynamically
generated from a HOT that instantiates some general ATL rules for the elements
of the input metamodels.

Generating test cases for model transformations is a task that can be easily
performed by exploiting the syntactic description of the input and output do-
mains of the transformation, given by the input and output metamodels. This
kind of approach to test set generation is referred to as black-box generation,
since the process does not involve an analysis of the internal structure of the
transformation under testing. In [9] the last step of the test data generation pro-
cess is the MM2TM transformation for the generation of test models according to
a test criterion. In [9] the generation of models is guided by model fragments that
are particular model chunks identified in previous steps: each model fragment
should appear at least once in generated test models. To be implemented as a
generic model transformation, applicable to any input metamodel, the MM2TM
transformation has to be dynamically generated for each input metamodel. The
generating HOT contains the logic of the coverage criteria (i.e., a different HOT
has to be developed if we want to use a different criteria).

5 Transformation Analysis

The generation of an output model that represents a particular analysis of an
input transformation is inherently a HOT.

An example of these HOTs is given in [4]. The ATL to Problem use case
describes a transformation from an ATL model into a Problem model. The
generated Problem model conforms to a single-class Problem metamodel and
contains the list of non-structural errors and warnings that have been identified
within the input ATL model. The transformation assumes the input ATL model
is structurally correct, i.e. it conforms to the ATL metamodel.

[26] shows a complex example of transformation analysis in the GReAT frame-
work. The HOT in this case reads a model transformation to derive a variability
metamodel: for each mapping defined in the transformation, the types of the in-
put and output elements are extracted and gathered into a model of the possible
variabilities of the system.

www.manaraa.com

On the Use of Higher-Order Model Transformations 27

A HOT included in the Topcased project [33] analyzes a transformation to
address the problem of conformance checking. In [33] the authors describe a
framework that translates abstract SimplePDL models into Petri nets. The Sim-
plePDL2PetriNet transformation is strongly dependent on a set of implementa-
tion choices made by the user. When the author faces the task of checking the
correctness of the Petri nets starting from SimplePDL specifications, they need to
analyze also the SimplePDL2PetriNet transformations to retrieve the translation
choices. The corresponding ATL HOT takes as input the SimplePDL2PetriNet
transformation, the Petri net to check, and the high-level specifications. As out-
put it returns a boolean value expressing the result of the conformance test.

6 Transformation Composition

There are two mechanisms to perform the composition of model transformations.
External composition consists in chaining separate model transformations and in
passing models from one transformation to another. Internal composition com-
poses two model transformation definitions into one new model transformation,
with a typically complex merge of the transformation rules. Internal composition,
when performed by a model transformation, is a higher-order problem.

[36] provides an example of internal composition performed by a HOT. The
paper uses superimposition as the composition mechanism to merge two ATL
transformation modules into a single output transformation. Superimposition is
a simple kind of internal composition in which a transformation module A is
superimposed to a transformation module B obtaining a transformation module
C, such that: 1) C contains the union of the sets of transformation rules and
helpers of A and B; 2) C does not contain any rule or helper of B, for which A
contains a rule or helper with the same name and the same context.

In [36] the HOT is split up in the external composition of two HOTs: ATL-
Copy.atl that is a simple copying transformation, and Superimpose.atl that pro-
vides the special transformation rules for superimposition.

7 Transformation Modification

In our survey the most common use of HOTs is related to the modification of
existing transformations. The HOTs of this kind can be more precisely classified
in one of the sub-classes described in the following sections.

7.1 Transformation Variants

The transformation variants approach is particularly useful when developing
product lines, as in [32]. In this work HOTs are programmed using the model-to-
text transformation language MOFScript. Two sets of HOTs are used to generate
two kinds of variability: 1) Platform Variability is implemented by generic HOTs
that are developed once and can be applied on every input transformation; Intra-
domain Variability is implemented by ad-hoc HOTs that hard-code some domain
knowledge to change the internal structure of the original transformation.

www.manaraa.com

28 M. Tisi et al.

A particular kind of variants is produced during mutation analysis. Mutation
analysis consists in systematically creating faulty versions of a program (called
mutants) and in checking the efficiency of a test dataset to reveal the faults
in these erroneous programs. The main interest of mutation analysis is to pro-
vide an estimate of the quality of a test dataset with the proportion of faulty
programs it detects. To be effective, mutation analysis must create mutant pro-
grams that correspond to realistic faults. The faults are injected into the correct
program by means of a set of mutation operators. The problem to identify a set
of realistic mutation operators for model transformations, independently from
a particular transformation language has already been studied in [30]. The au-
thors distinguish four error classes, correspondent to the four main operations
performed by model transformations, i.e navigation, filtering, output creation,
input modification. For each one of the error classes, a set of mutation operators
is defined to represent the most common mistakes in transformation develop-
ment. For instance one of the simplest mutation operators is Collection Filtering
Change with Deletion (CFCD) that represent the mistake of forgetting a needed
filter from the left hand side of a transformation rule. [9] proposes a formaliza-
tion of mutation operators as a set of HOTs and provides an implementation of
the mutation framework in the EMF platform.

7.2 Feature Weaving

HOTs can be easily used to weave cross-cutting concerns into a model trans-
formation. Examples of these concerns are related to debugging, traceability,
program tracing. A HOT for adding a cross-cutting concern can usually be pro-
grammed with extreme generality, and complete independence from the logic of
the original transformation. In this way the same HOT can be used as a general
means to add that specific feature to any transformation. As a further conse-
quence several features can be added to the same transformation by sequentially
applying the corresponding HOTs.

The use of HOTs in this application case is especially convenient when the
transformation language does not provide a native implementation of aspect
orientation. An aspect oriented mechanism can be in fact considered as a partic-
ular type of higher-order transformation that is performed on-the-fly when the
original transformation is executed. A further solution to attach cross-cutting
concerns to existing rules could be based on rule inheritance. Such a solution is
already programmable in the current ATL but it lacks generality, having a tighter
coupling with the program logic. Finally a more general alternative could be im-
plemented by using reflection, letting the developer dynamically plug-in code
to existing rules. The coupling between the feature code and the program logic
could be relatively loose in this case.

There are several cases in literature that exploit ATL HOTs for cross-cutting
concerns. [3] describes an ATL2BindingDebugger HOT that adds a debug in-
struction to each attribute binding in an input ATL transformation. Each time
that a value is assigned to an attribute using a binding in the target element of a
rule, a line is printed in the logfile containing the names of the rule, of the target

www.manaraa.com

On the Use of Higher-Order Model Transformations 29

element and of the assigned value. This feature is easily implemented augmenting
each binding in the form targetAttribute ← value with a print on a logfile us-
ing the syntax targetAttribute ← value.debug(′ruleName.targetName.value′).
The required ATL2BindingDebugger HOT is very concise and shows how nicely
HOTs can address cross-cutting concerns.

[21] and [2] provide two different implementations for another application case,
in which the addressed cross-cutting concern is traceability, i.e. the maintenance
of a set of links between corresponding source and target model elements. In
[21] traceability is implemented by adding to each original transformation rule
the production of a traceability link in an external ad-hoc traceability model
(conforming to a small traceability metamodel). The solution presented in [2] is
analogous, with a slightly higher complexity, due to the fact that the traceability
link is represented by an ad-hoc extension of the core weaving metamodel.

7.3 Changing the Engine Execution Mode

A higher-order transformation can be used to modify the execution mode of
the transformation engine for particular model transformations. Some practical
problems, in fact, would find a more natural solution if the transformation engine
had a different execution semantics. This would allow for more readable and
concise transformation code.

For example in [9] transformations are used to implement mutation operators.
The most natural way to express a mutation operator is a single transformation
rule, whose intended application would require the generation of a different out-
put model (i.e.; a mutation) each time that the rule is applied to a single mutation
point. In the chosen solution a HOT translates the simple mutation specification
with the mutation semantics in an equivalent, much more verbose, version with
the standard execution semantics.

As a side note the solution in [9] has another reason of interest in being the
only second order HOT in this survey. It is a transformation that takes as input
and output other HOTs, i.e. the mutation operators.

7.4 Transformation Language Extension

One of the means to simplify the specification of a transformation is the addition
of new language features, e.g., a new operator. However the direct extension of a
transformation language and engine may not be the optimal solution. Often the
new feature would be useful in only a limited set of cases, not enough to justify
the cost of making the engine and notation heavier.

HOTs provide a good alternative for language extension. The transformation
language can be easily extended by adding new metaclasses to the transformation
metamodel. Then a HOT can be developed to convert the new elements into a
set of rules in the existing transformation language. In this way the extension
does not require to change the actual engine and can be easily applied only
to transformations that need it. Examples of this kind of transformations are
described in [31]. [17] uses this approach to develop an extended version of ATL
to address the specification of model matching strategies.

www.manaraa.com

30 M. Tisi et al.

7.5 Parametric Transformation

Being faithful to the “everything is a model” ideal, ATL does not support an
explicit parameter initialization mechanism but it requires to define a metamodel
for the parameters and to add it as a further input to the transformation.

A common alternative among ATL developers is the use of HOTs to overwrite
a parameter value directly defined within the original transformation. This solu-
tion is sometimes more concise (thanks to the ATL refining mode) and flexible
of the standard one.

7.6 Transformation Adaptation

Within a model-driven system it is possible that a set of properties for a specific
transformation is known only at runtime. Often such a problem is addressed by
representing these properties as a configuration model. The configuration model
is given as input to the transformation, guiding a set of choices that are hard-
coded into a limited set of rules. This approach, however, requires to define, at
development time, the kinds of variations that will be possible at runtime.

HOTs are the natural means to remove any constraint on the possible runtime
adaptations of the base transformation. [34] describes an example of this kind,
and provides a simple implementation that chooses at runtime among different
variants of rule, based on runtime statistics.

8 Other Applications for HOTs

This section lists application areas for HOTs that have not yet been explored
by works in literature. The list does not want to be exhaustive but it has the
purpose of providing some directions for future works.

Transformation metrics. One of the most natural applications of HOTs is
the analysis of model transformations for deriving metric values. Several
works implement measurement transformations for generic models (e.g., [35])
and these transformations are of course applicable also to the analysis of
transformation models. However, current research lacks a set of specifically
higher-order transformations for the generation of transformation metrics.

Transformation refactoring. The building of model transformations could
benefit from a set of transformation refactorings, encapsulating best practices
for transformation development. These refactorings could be implemented as
HOTs and executed by the users during the editing of the transformation. A
theory of model transformation refactorings has not been investigated and
refactoring HOTs have not been developed yet.

Transformation optimization. The execution of a model transformation
could be improved by preceding the execution phase with a preprocessing
step. In this step the transformation could be analyzed to detect common
patterns and translated into an equivalent version that trades a speed or
memory improvement with a loss in readability and manageability. This
topic has not been addressed by previous work.

www.manaraa.com

On the Use of Higher-Order Model Transformations 31

Table 1. Summary of HOTs

Name (# of cases) Language Source MM Target MM Type Ref.
AMWtoATL KM32SQL ATL AMW ATL Implementation [7]
AMWtoATL MantisBug ATL AMW ATL Implementation [15]
AMWtoATL ATL AMW ATL Implementation [1]
AMWtoXSLT ATL AMW XSLT Implementation [1]
ATL2BindingDebugger ATL ATL ATL Weaving [3]
ATL2Tracer ATL ATL ATL Weaving [21]
ATL2WTracer ATL ATL ATL Weaving [2]
ATL2Problem ATL ATL Problem Analysis [4]
KM32CONFATL ATL KM3 ATL Generic [18]
KM32ATLCopier ATL KM3 ATL Generic [6]
AMWtoATL Kelly ATL AMW ATL Implementation [25]
MMD2ATL ATL KM3 ATL Implementation [14]
MMTtoMT ATL ATL, Ecore ATL Execution [13]
MSDSL2EMF ATL KM3 ATL Generic [10]
Superimpose ATL ATL, ATL ATL Composition [36]
ATLCopy ATL ATL, ATL ATL Composition [36]
HITransform MOFScript MOFScript MOFScript Variants [32]
Topcased ATL ATL ATL Analysis [33]
Metamodel2Derivation ATL Ecore ATL Generic [12]
DUALLyLeft2Right (2) ATL AMW, Ecore, Ecore ATL Implementation [28]
Easystyle XSLT HTML XSLT Implementation [8]
HOT4Tests ATL Ecore ATL Testing [9]
Mutators (11) ATL ATL, Trace ATL Mutation [9]
SingleApplication ATL ATL ATL Execution [9]
patchgen ATL AMW ATL Implementation [16]
propagate ATL ATL,INMM,INMM,AMW ATL Implementation [16]
VariabilityMM HOT GReAT GME, GReAT GReAT Analysis [26]
MML2MMR (2) ATL AMW, Ecore, Ecore ATL Implementation [20]
AML2ATL ATL AML ATL Extension [17]
UITransReconfig ATL ATL, USRMM ATL Adaptation [34]
Ecore2RDF (2) ATL Meo, Ecore, OWL ATL Implementation [19]

Partial Evaluation. While a model transformation has often several input
models, it is very common the case in which some of the input models are not
subject to frequent changes. At every execution, the transformation needs
to process all the input models, including the stable ones. Often it is possi-
ble to obtain a remarkable performance gain by removing the stable input
models and hard-coding their information inside the transformation. This
process, called partial evaluation has two benefits: 1) the new version of the
transformation needs to process only the input models that actually change
between different executions; 2) the hard-coding of some input models can
allow ad hoc optimizations and a simplification of the transformation struc-
ture. The implementation of a general HOT for the partial evaluation of any
transformation, with respect to any input model has never been addressed.

9 Conclusions

In this paper we have presented a categorized survey of HOTs. The categorization
is based at its first level on the concept of transformation pattern, for which
we have given an informal definition. Four base patterns are identified. Then
HOTs are further divided based on some variants of the base patterns. Table 1
summarizes this list of HOTs showing their input and output metamodels and
the transformation areas they belong to.

www.manaraa.com

32 M. Tisi et al.

The main contributions of this paper are: 1) to provide an index of the pre-
vious work on HOTs, and to identify some important unexplored areas; 2) to
provide a list of applications for HOTs proving the practical value of this ap-
proach and the necessity of a deeper research in this direction; 3) to identify a
limited set of common transformation patterns that involve HOTs; 4) to provide
a first categorization of existing and future HOTs based on their role within
transformation patterns.

References

1. AMW to ATL, http://www.eclipse.org/gmt/amw/examples/#AMW_2ATL_XSLT
2. AMW Traceability, http://www.eclipse.org/gmt/amw/usecases/traceability
3. ATL to BindingDebugger,

http://www.eclipse.org/m2m/atl/atlTransformations/

#ATL2BindingDebugger

4. ATL to problem,
http://www.eclipse.org/m2m/atl/atlTransformations/#ATL2Problem

5. DoDAF 2004 volume II: product description (4/2/2004),
http://www.defenselink.mil/cio-nii/global_Info_grid.html

6. KM3 to ATL copier,
http://www.eclipse.org/m2m/atl/atlTransformations/#KM32ATLCopier

7. Translating KM3 into SQL using AMW and ATL,
http://www.eclipse.org/gmt/amw/examples/#AMW_KM32SQL

8. WebRatio, http://www.webratio.com/
9. WebRatio MD Framework,

http://home.dei.polimi.it/mbrambil/legacytomda

10. Bézivin, J., Hillairet, G., Jouault, F., Kurtev, I., Piers, W.: Bridging the MS/DSL
Tools and the Eclipse Modeling Framework. In: Proceedings of the International
Workshop on Software Factories at OOPSLA (2005)

11. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
Transformations? Transformation Models! In: Model Driven Engineering Lan-
guages and Systems, pp. 440–453 (2006)

12. Botterweck, G., O’Brien, L., Thiel, S.: Model-driven derivation of product architec-
tures. In: Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pp. 469–472. ACM, New York (2007)

13. Brambilla, M., Fraternali, P., Tisi, M.: A metamodel transformation framework for
the migration of WebML models to MDA. In: MDWE at Models 2008 (2008)

14. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A metamodel independent approach
to difference representation. Journal of Object Technology 6, 165–185 (2007)

15. Del Fabro, M.D., Bezivin, J., Valduriez, P.: Model-Driven Tool Interoperability:
An Application in Bug Tracking. LNCS, p. 863. Springer, Heidelberg (2006)

16. Didonet Del Fabro, M., Bézivin, J.: Generic model management: from theory to
practice. In: First Intl. Workshop on Towers of Models (2007)

17. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: A domain specific language for
expressing model matching. In: Proceedings of the 5ère Journée sur l’Ingénierie
Dirigée par les Modèles (IDM 2009), Nancy, France (2009)

18. Graaf, B., van Deursen, A., Baudry, B., Faivrea, A., Ghosh, S., Pretschner, A.: Us-
ing MDE for generic comparison of views. In: Proceedings of the 4th International
Workshop on Model Design, Verification and Validation (MoDeVVa 2007) (2007)

http://www.eclipse.org/gmt/amw/examples/#AMW_2ATL_XSLT
http://www.eclipse.org/gmt/amw/usecases/traceability
http://www.eclipse.org/m2m/atl/atlTransformations/#ATL2BindingDebugger
http://www.eclipse.org/m2m/atl/atlTransformations/#ATL2BindingDebugger
http://www.eclipse.org/m2m/atl/atlTransformations/#ATL2Problem
http://www.defenselink.mil/cio-nii/global_Info_grid.html
http://www.eclipse.org/m2m/atl/atlTransformations/#KM32ATLCopier
http://www.eclipse.org/gmt/amw/examples/#AMW_KM32SQL
http://www.webratio.com/
http://home.dei.polimi.it/mbrambil/legacytomda

www.manaraa.com

On the Use of Higher-Order Model Transformations 33

19. Hillairet, G., Bertrand, F., Lafaye, J.Y.: MDE for publishing data on the semantic
web. In: Transf. and Weaving Ontologies in MDE (TWOMDE) at MODELS 2008
(2008)

20. Jossic, A., Del Fabro, M.D., Lerat, J.P., Bézivin, J., Jouault, F., Sodius, S.A.S.:
Model integration with model weaving: a case study in system architecture. In: In-
ternational Conference on Systems Engineering and Modeling ICSEM 2007 (2007)

21. Jouault, F.: Loosely coupled traceability for ATL. In: Workshop on Traceability at
ECMDA 2005, Nuremberg, Germany (2005)

22. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: Proceedings of the 5th international
conference on Generative programming and component engineering (2006)

23. Jouault, F., Bézivin, J.: KM3: A DSL for Metamodel Specification. In: Formal
Methods for Open Object-Based Distributed Systems. LNCS. Springer, Heidelberg
(2006)

24. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Satellite Events at the
MoDELS 2005 Conference, pp. 128–138 (2006)

25. Cointe, P., Garcés, K., Jouault, F., Bézivin, J.: Adaptation of models to evolving
metamodels. Technical report (2008)

26. Kavimandan, A., Klemm, R., Gokhale, A.: Automated Context-Sensitive dialog
synthesis for enterprise workflows using templatized model transformations. In:
EDOC 2008, pp. 159–168 (2008)

27. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks.
In: 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, Portland, Oregon, USA, pp. 602–616. ACM, New York
(2006)

28. Malavolta, H.M., Pelliccione, P., Tamburri, D.A.: Providing architectural languages
and tools interoperability through model transformation technologies. Technical
report, TR 004-2008, Available at the DUALLY site (2008)

29. Marcos, D.D.F., Jean, B., Frric, J., Erwan, B., Guillaume, G.: AMW: a generic
model weaver. In: 1res Journes sur l’Ingnierie Dirige par les Modles (2005)

30. Mottu, J.-M., Baudry, B., Le Traon, Y.: Mutation Analysis Testing for Model
Transformations, pp. 376–390 (2006)

31. Muliawan, O.: Extending a model transformation language using higher order
transformations. In: 15th Working Conf. on Reverse Engineering, WCRE (2008)

32. Oldevik, J., Haugen, O.: Higher-Order transformations for product lines. In: Pro-
ceedings of the 11th International Software Product Line Conference (SPLC 2007),
pp. 243–254. IEEE Computer Society, Washington (2007)

33. Pantel, M.: ACADIE team, OLC team, and TOPCASED team: The TOPCASED
project. In: Int. Conf. on Embedded Real Time Software (2006)

34. Sottet, J.S., Ganneau, V., Calvary, G., Coutaz, J., Favre, J.M., Demumieux, R.:
Model-Driven adaptation for plastic user interfaces. In: Baranauskas, C., Palanque,
P., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 397–
410. Springer, Heidelberg (2007)

35. Vépa, É., Bézivin, J., Brunelière, H., Jouault, F.: Measuring model repositories.
In: Proceedings of the Model Size Metrics Workshop at the MoDELS/UML 2006
conference, Genova, Italy (2006)

36. Wagelaar, D.: Composition techniques for Rule-Based model transformation lan-
guages. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS,
vol. 5063, pp. 152–167. Springer, Heidelberg (2008)

www.manaraa.com

Managing Model Adaptation by Precise
Detection of Metamodel Changes

Kelly Garcés1,2, Frédéric Jouault1, Pierre Cointe2, and Jean Bézivin1

1 AtlanMod, EMN-INRIA Rennes
2 ASCOLA, LINA (UMR 6241)-INRIA Rennes

{kelly.garces,pierre.cointe}@emn.fr,

{frederic.jouault,jean.bezivin}@inria.fr

Abstract. Technological and business changes influence the evolution
of software systems. When this happens, the software artifacts may need
to be adapted to the changes. This need is rapidly increasing in systems
built using the Model-Driven Engineering (MDE) paradigm. An MDE
system basically consists of metamodels, terminal models, and transfor-
mations. The evolution of a metamodel may render its related terminal
models and transformations invalid. This paper proposes a three-step
solution that automatically adapts terminal models to their evolving
metamodels. The first step computes the equivalences and (simple and
complex) changes between a given metamodel, and a former version of
the same metamodel. The second step translates the equivalences and
differences into an adaptation transformation. This transformation can
then be executed in a third step to adapt to the new version any ter-
minal model conforming to the former version. We validate our ideas by
implementing a prototype based on the AtlanMod Model Management
Architecture (AMMA) platform. We present the accuracy and perfor-
mance that the prototype delivers on two concrete examples: a Petri Net
metamodel from the research literature, and the Netbeans Java meta-
model.

Keywords: Model-Driven Engineering, Model Transformation,
Adaptation.

1 Introduction

Software engineers usually have to adapt computer systems to technological
and business changes. This need is rapidly increasing in systems built using the
Model-Driven Engineering (MDE) paradigm. An MDE system basically consists
of metamodels, terminal models, and transformations. The addition of new fea-
tures and/or the resolution of bugs may change metamodels. The changes may
break the consistency of related terminal models and transformations. In this
work, we focus on terminal models consistency. Fig. 1 illustrates the problem: a
metamodel MM1 evolves into a metamodel MM2 (see the dotted arrow). Our
concern is to adapt any terminal model M1 conforming to MM1 to the new
metamodel version MM2 (see the dashed arrow).

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 34–49, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Managing Model Adaptation by Precise Detection of Metamodel Changes 35

This paper proposes a three-step adaptation. Firstly, a matching process com-
putes the equivalences and changes between MM1 and MM2 by executing a set
of heuristics. Secondly, an adaptation transformation is derived from the dis-
covered equivalences and changes. Finally, this transformation brings M1 into
agreement with MM2, and persists the result in M2.

The bulk of this work is devoted to the first step that discovers equivalences,
as well as simple and complex changes. We explicitly distinguish two kinds of
changes because complex changes need a more insightful adaptation that simple
changes. Whereas a simple change describes the addition, deletion, or update
of one metamodel concept, a complex change integrates a set of actions af-
fecting multiple concepts1. The paper reports a family of heuristics responsible
for figuring out both simple and complex changes, and representing them in a
straightforward way.

MM1 MM2

M1 M2

Evolution

Adaptation

c2 c2

c2: conformsTo

Fig. 1. Metamodel evolution and model adaptation

We have implemented a proof-of-concept prototype based on the AtlanMod
Model Management Architecture (AMMA) platform [2]. We have evaluated its
performance and accuracy on two examples: a Petri Net metamodel from the
research literature, and the Netbeans Java metamodel. The Petri Net metamodel
is selected because it is simple enough to be analyzed in a paper, and includes
complex changes. The concrete choice of the Netbeans Java metamodel is driven
by three main reasons: 1) it is a ”real-life” problem, 2) experimental data is
widely available (open-source), and 3) the metamodel and terminal models are
significantly larger than those of Petri Net, which illustrates the scalability of
our approach.

We investigate 6 versions of the Petri Net metamodel (containing between 10
and 20 elements), and 8 versions of the Java metamodel (containing approxi-
mately 250 elements). Using this prototype, we are able to analyze on a desktop
machine any pair of the Petri Net metamodels in under 1 second, and any pair
of the Java metamodels in under 10 seconds. Moreover, our tool always discovers
the changes, and only fails by identifying simple changes when in truth there is
an equivalence (in 1% of the cases).

This paper is organized as follows: Section 2 compares our contributions to
other known solutions. Section 3 presents a running example. Section 4 presents

1 The reader interested on examples of simple and complex changes may consult [1].

www.manaraa.com

36 K. Garcés et al.

our solution to adapt models to evolving metamodels. Section 5 describes the
results of applying our approach on the examples. Finally, Section 6 concludes
the paper.

2 Related Works

We may divide the related approaches according to which of the two main issues
they deal with: 1) discovery of equivalences and differences, or 2) derivation of
adaptation transformations.

We now describe the related works closer to the first problem. In the context
of relational and object-oriented data bases, the production of equivalences be-
tween two schemas/ontologies has been invested in [3][4]. In the MDE domain,
the approaches of [5][6][7][8] present algorithms for detecting changes between
UML models. Sriplakich et al. [9] identify simple changes in terminal models
conforming to any metamodel. Wenzel et al. [10] present an approach which
discovers fine-grained traces between versions of modeling languages, e.g., UML
models, schemas, web service description languages, and domain specific lan-
guages. The EMF Compare tool [11] reports simple changes between terminal
model pairs or metamodel pairs. Finally, Falleri et al. [12] automatically detect
equivalences between two metamodels using the algorithm Similarity Flooding
described in [13].

In contrast to the first issue, the second one has been addressed by some recent
approaches. The works described in [14][15][16][17][18] assume traces of changes
are available, and derive adaptation transformations from them. In particular,
[14], [18], and [17] apply stepwise automatic transactions on MM1 to obtain
MM2. These approaches then reuse the logs of applied transactions to derive
adaptation transformations. Cicchetti et al. [16] use difference models provided
by external tools.

The following six items position our approach in comparison with the solutions
mentioned above:

1. Similarly to [10][18], our approach computes equivalences and differences
between any pair of metamodels (e.g., representing schemas, UML models,
ontologies, grammars) .

2. Our solution overlaps the solutions presented in [14][16][17] in the sense of
considering both simple and complex changes.

3. As in [12], in our matching process the robust algorithm Similarity Flooding
can be executed. Falleri’s main contribution is to provide 6 graph representa-
tion configurations. These configurations generate graphs that contain some
metamodel information or all the metamodel information. Although light
metamodel representations benefit the algorithm performance, they point
out the matching process accuracy increases when all the metamodel in-
formation is represented in the graphs. This is what our approach exactly
does.

www.manaraa.com

Managing Model Adaptation by Precise Detection of Metamodel Changes 37

4. Unlike existing approaches [14][15][16][17][18], we do not suppose that the
changes are already known. We consider a more general case where the evo-
lution of metamodels is done without someone explicitly keeping track of the
applied changes.

5. The matching step executes modularized heuristics that discover the dif-
ferences between the metamodels. While most of the previous approaches
(with the exception of [4]) execute all the heuristics, each of our heuristics
may be plugged or unplugged on demand, which may mean a considerable
performance increase.

6. An experimentation shows that our approach scales to larger metamodels
and models. This is an improvement on other techniques developed to date.

To sum up, most of the listed works solve the two main issues in an isolated
fashion. Some of them are in contexts different to metamodel evolution. In con-
trast, we propose a solution that addresses all the described model adaptation
issues in a consistent and integrated way.

3 Running Example

This section describes a running example, i.e., the Petri Net metamodel, and
how to represent it using the KM3 metametamodel. We omit describing the
Netbeans Java metamodel to save space, this is fully depicted in our technical
report [1]. We choose the KM3 notation because it is simple but expressive
enough to represent metamodels [19].

3.1 A Sample Petri Net Metamodel

This example is based on the six versions of the Petri Net metamodel provided by
[14]. Fig. 2 illustrates versions 0 (MM1) and 2 (MM2). MM1 represents simple
Petri Nets. These nets may consist of any number of places and transitions. A
transition has at least one input and one output place. MM2 represents more
complex Petri Nets. The principal changes between MM1 and MM2 illustrated
in Fig. 2 are:

– References place and transition change their multiplicity from 0-* to 1-*.
– Classes PTArc and TPArc as well as references in and out are added.
– References src and dst are extracted from classes Place and Transition.

Remark 1. The extraction of the reference dst illustrates a complex change
named Extract class. This implies to add and remove a reference, add a class,
and associate classes. In considering these actions as isolated simple changes,
we may skip changes without migrating involved data from M1 to M2. In con-
trast, when we distinguish the complex change, we infer (for instance) that the
added property (e.g., dst), contained in the new class PTArc, actually corre-
sponds to the property dst removed from the class Place. Since we know the
relationship between the properties we can migrate the data. We thus need to
explicitly distinguish complex changes in order to properly derive adaptation
transformations.

www.manaraa.com

38 K. Garcés et al.

Place Transition

Net

+src 1..* +dst0..*

+dst

1..*

+src

0..*

+net

1
+place 0..*

+net

1

+transition 0..*

(a) Petri Net MM1 (version 0)

Place Transition

Net

+src 1

+out

0..*
+dst

1

+in

0..*

+net

1+place 1..* +net

1

+transition 1 ..*

PTArc

TPArc
+out

1..*

+src

1

+in

1..*
+dst1

(b) Petri Net MM2 (version 2)

Fig. 2. Petri Net metamodels

3.2 The KM3 Metametamodel

Fig. 3 shows the basic concepts of the KM3 metametamodel. The ModelElement
class denotes concepts that have a name. Classifier extends ModelElement.
DataType and Class in turn specialize Classifier. Class consists of a set of
StructuralFeatures. There are two kinds of structural features: Attribute or
Reference. StructuralFeature has type and multiplicity (lower and upper
bound). Reference has opposite which enables to get the owner and target of
one reference. Class may extend zero or more other classes and may be abstract.
In the Petri Net metamodel, Place conforms to the Class concept. The reference
dst conforms to the Reference concept, this has the attributes lower and upper
with value 0 and *.

ModelElement
-name: String

Classifier
-lower :I nteger
-upper: Integer

StructuralFeature

Datatype

-isAbstract: Boolean
Class Attribute Reference

+owner

1

+structuralFeatures

*

+opposite

0..1

1

+supertypes

*

*

+type

1 *

Fig. 3. KM3 concepts

4 A Model Adaptation Approach

As we introduced earlier, our model adaptation approach adapts terminal
models in three steps (Fig. 4). In the first step, a matching strategy computes

www.manaraa.com

Managing Model Adaptation by Precise Detection of Metamodel Changes 39

MM1

Mappings
(1)

Matching
(2)

Translation
Adaptation

Transf.
Library (3)

Execution

M1

MM2 M2

Fig. 4. Approach Overview

equivalences and differences between the metamodels MM1 and MM2 by exe-
cuting a set of heuristics (available in a library). Equivalences and differences
are represented by a matching model. In the second step, the matching model
is translated into an adaptation transformation by using a Higher-Order Trans-
formation (HOT). Finally, the adaptation transformation is executed. Below we
discuss the three steps in detail.

4.1 Matching Equivalences and Differences

Matching model. Before describing the matching step, we explain how match-
ing models represent equivalences and differences. A matching model conforms to
the Matching metamodel2 illustrated in Listing 1.1. The main concept is Equal
which describes a mapping (or correspondence) between an element of MM1
(leftElement) and an element of MM2 (rightElement). Equal has a similarity
value (between 0 and 1) that represents the plausibility of the correspondence.
An equivalence with similarity value 1 represents that the MM2 element is an
identical copy of the MM1 element. An equivalence with similarity value 0.7
describes that the MM2 element is a copy of the MM1 element including simple
modifications. An equivalence with similarity value 0 link elements different to
each other. Other basic concepts are Added and Deleted which mark a meta-
model element as deleted/added from/into MM1.

Listing 1.1. Excerpt of the matching metamodel

1 class LeftElement extends WLinkEnd {}
2 class RightElement extends WLinkEnd {}
3 class Link extends WLink {
4 reference left [0−1] container : LeftElement ;
5 reference right [0 −1] container : RightElement ;
6 }
7 class Equal extends Link {
8 attribute similarity : Double ;
9 }
10 class Added extends Link {}
11 class Deleted extends Link {} . . .
12 class AssociatedClassExtracted extends EqualStructuralFeature {
13 reference associatedReference container : RightElement ;
14 }

2 This metamodel extends the core weaving metamodel proposed by [20].

www.manaraa.com

40 K. Garcés et al.

Equal, Added, and Deleted can be extended to describe more specific equiva-
lences or changes. For example, EqualClass, EqualStructuralFeature, Equal-
Reference, EqualAttribute indicate the (KM3) types of leftElement and
rightElement. The concept AssociatedClassExtracted, in order, links prop-
erties undergoing the change Extract class.

Matching step. Matching models are computed by matching strategies, i.e.,
processes that incrementally execute a set of heuristics. The heuristics are needed
because the comparison of metamodels (graphs) is a NP complete problem.
Fig. 5 is a simple overview of what a matching strategy is. There may be more
elaborated matching strategies, e.g., including loops. Fig. 5 presents the kinds of
heuristics (using a particular symbol) and their execution order. Every heuristic
produces a matching model. For the sake of simplicity, we omit intermediate
matching models in Fig. 5.

Fig. 5 shows a Creation heuristic which prepares a collection of equivalences
by matching the elements of MM1 and MM2. Afterward, Similarity heuris-
tics compute similarity values by comparing the names, internal properties, and
structures of the matched elements. Subsequently, Filtering heuristics select
equivalences taking into account the confidence value computed by the Simi-
larity heuristics. A Differentiation heuristic recognizes equivalences, additions,
and deletions. The matching step finishes when Rewriting heuristics reorganize
a given matching model to make it closer to adaptation transformations. Note
that the user can build (tune) matching strategies by choosing concrete heuris-
tics (for each kind) from the available library. Moreover, s/he can refine the
matching models generated along the process.

Matching

MM1

MM2

Matching
modelCreation Filtering RewritingDiffLibrary Similarity

Matching
tuning

Fig. 5. A simple matching strategy

Let us now describe the kinds of heuristics by means of concrete implementa-
tions. We select them because they analyze ”safe” indicators (e.g., name) that
two elements are the same [6]. In this paper, we describe the heuristics in terms
of the KM3 concepts. Our approach remains nonetheless generic (i.e., indepen-
dent of KM3). The heuristics can be implemented using other formalisms such
as MOF or EMF. We now illustrate the family of heuristics using the AtlanMod
Transformation Language (ATL)[21]. An ATL transformation takes models (con-
forming to input metamodels) as input, and yields models (conforming to output
metamodels) as output. The transformations are composed of rules. A rule con-
sists of two mandatory parts: the from, and the to [22]. The from part defines an
input pattern and an Object Constraint Language (OCL) condition [23] (written
in terms of input metamodel concepts). The to part specifies an output pattern

www.manaraa.com

Managing Model Adaptation by Precise Detection of Metamodel Changes 41

and bindings. Each category below has a code listing whose number is enclosed
between parenthesis.

Creation (Listing 1.2) The creation heuristics match concepts of MM1 (line 3)
and concepts of MM2 (line 4), and create equivalences (lines 7-10) when the
concepts hold a condition (line 5). The properties left and right of Equal
refer to MM1 and MM2 (lines 8-9). The condition is written in terms of the
KM3 metamodel concepts.

Listing 1.2. Creation transformation excerpt

1 rule Creation {
2 from
3 a : KM3 !<Concept> in MM1
4 b : KM3 !<Concept> in MM2
5 (condition) -- for example , a. type = b. type
6 to
7 e : EqualMM ! Equal (
8 left <− a . ref ,
9 right <− b . ref
10)
11 }

A simple Creation heuristic is Creation by type. This creates a mapping when two
elements conform to the same KM3 type (i.e., Class, Reference or Attribute)
(see comment in line 5). Another Creation heuristic is Creation by Type and
FullName which creates mappings when two elements has the same KM3 type
and fullname. The fullname is a string that concatenates the names of elements
related to another element. For example, the fullName of transition reference
is PetriNet|Net|transition because the PetriNet package contains the Net
class, and this class contains the transition reference.

Similarity (Listing 1.3). The similarity heuristics compute a similarity value
for each equivalence prepared by Creation heuristics (line 3). A function (func)
establishes the similarity values (line 6). Note that the Similarity heuristics have
no longer the KM3 concepts in the input pattern. Instead of that, the Equal
concept is used. The function refers to MM1 and MM2 concepts by using left
and right of Equal.

Listing 1.3. Similarity transformation excerpt

1 rule Similarity {
2 from
3 e : EqualMM ! Equal
4 to
5 e : EqualMM ! Equal (
6 sim <− func
7)
8 }

Next we present four Similarity heuristics whose functions calculate similarity
values by comparing particular properties of the KM3 metamodels.

www.manaraa.com

42 K. Garcés et al.

– Name Similarity compares the names of KM3 elements in different ways, for
instance, using string comparison algorithms [24] or dictionaries of synonyms
[25].

– Multiplicity Similarity compares the multiplicity of references and attributes.
This assigns a similarity value to mappings connecting metamodel references
that have the same multiplicity (lower and upper bounds).

– Similarity by Internal Properties compares several properties of the KM3
elements. Each property contributes a relative similarity value, i.e., the sim-
ilarity value multiplied by a weight. The net similarity value is the sum of
all relative values. For instance, the net similarity value of elements con-
forming to Reference is the sum of the relative values of names, types,
multiplicities, and opposites.

– Context Similarity compares the relationships between metamodel elements.
For example, this compares attributes/references contained in a given class,
its superclasses, and its associated classes. The implementation of this Simi-
larity heuristic is more complex than the previously presented ones.
This is inspired from the Similarity Flooding (SF) algorithm. Our
algorithm is executed in two steps. The first step associates two equiva-
lences (e1 and e2) if there is a relationship between the linked elements.
The second step propagates the similarity value from e1 to e2 because of
the relationship.

Filtering (Listing 1.4). The previous heuristics may have created unwanted
equivalences (i.e., equivalences with low similarities). The filtering heuristics se-
lect the equivalences (line 3) whose similarity values satisfy a condition (line
4). A basic filtering heuristic is Threshold. This selects the mappings with a
similarity value higher than a given threshold value (see comment of line 4).

Listing 1.4. Filtering transformation excerpt

1 rule Filtering {
2 from
3 e : EqualMM ! Equal
4 (condition) -- For example , e. similarity > threshold
5 to
6 e : EqualMM ! Equal
7 }

Differentiation (Listing 1.5). This kind of heuristic distinguishes between equiva-
lent, deleted, and added metamodel elements. A concrete implementation of Dif-
ferentiation heuristics compares KM3 elements to equivalences. The intuition is
that not linked metamodel elements correspond to deletions and additions. List-
ing. 1.5 marks MM1 elements as deleted elements (line 6) when they are not
linked by equivalences (lines 3-4). The implementation contains another rule,
ommitted because of space constraints, that marks unlinked MM2 elements as
added elements.

www.manaraa.com

Managing Model Adaptation by Precise Detection of Metamodel Changes 43

Listing 1.5. Differentiation transformation excerpt

1 rule Deleted {
2 from
3 a : KM3 ! ModelElement in MM1
4 a . notLinked ()
5)
6 to
7 e : EqualMM ! Deleted
8 }

Rewriting (Listing 1.6). Before this step, most equivalences and differences are
contained in a single large collection. This heuristic reorganizes/retypes the
equivalences and differences in order to make them semantically richer. We dis-
cern three Rewriting heuristics: Nesting, Flattening, and Complex changes. The
Nesting and Flattening heuristics reorganize the equivalences considering the
relationships (containment and inheritance) between the linked concepts. For
instance, the Nesting heuristic rewrites (transition, transition) as a child
of (Net, Net) because of the containment relationship between these elements.
The Complex change heuristic infers complex changes from equivalences, addi-
tions, and deletions. For example, Listing 1.6 shows a rule that verifies if change
Extract Class has happened. The rule assemblies two properties a (added) and
d (deleted) using the AssociatedClassExtracted type. The conditions are: 1)
an introduced class owns the property a (line 5), and 2) this class is associated
to other class that contains d (line 7).

Listing 1.6. Complex changes transformation excerpt

1 rule AssociatedClassExtracted {
2 from
3 d : EqualMM ! DeletedStructuralFeature ,
4 a : EqualMM ! AddedStructuralFeature (
5 a . right . target . owner . isNewClass ()
6 and
7 a . right . target . owner . isAssociatedTo (d . left .

↪→target . owner)
8)
9 to
10 e : EqualMM ! AssociatedClassExtracted
11 }

4.2 Translation to Adaptation Transformations

In this step, the equivalences and differences are translated into an executable
adaptation transformation via a HOT. The HOT takes as input the final match-
ing model, and generates as output a model transformation written in a particu-
lar transformation language (e.g., ATL, XSLT, SQL-like). The HOT follows the
guidelines below:

– Yield a transformation rule for each EqualClass that links no abstract
classes. The HOT takes referred left and right classes to yield input and
output patterns.

www.manaraa.com

44 K. Garcés et al.

– Create a binding for each EqualStructuralFeatures attached to a Equal-
Class. The binding complexity depends on the Equal type. While a sim-
ple EqualStructuralFeature generates a simple binding, EqualStructural
Feature extensions (e.g., AssociatedClassExtracted) generate more elab-
orated bindings. In general, sophisticated bindings instruments the code that
adapt M1 models to complex changes.

Listing. 1.7 shows an adaptation transformation, written in ATL, which is gen-
erated by a concrete HOT. This creates the transformation rule Place2Place
(line 1) from the equivalence (Place, Place). The from part matches the ele-
ments conforming to Place (line 3). The to part creates elements conforming to
Place. The HOT moreover generates a complex binding (see line 6) from the
equivalence (out, dst). The binding calls an additional rule (i.e., dstPTArc) to
initialize dst of PTArc (lines 18) using the values dst of Place.

Listing 1.7. Transformation excerpt (Petri Net example)

1 rule Place2Place {
2 from
3 pV1 : MM1 ! Place
4 to
5 pV2 : MM2 ! Place (
6 out <− pV1 . dst −> collect (tV1 | thisModule . dstPTArc (tV1

↪→ , pV1) }))
7)
8 }
9 unique lazy rule dstPTArc {
10 from
11 transition : MM1 ! Transition ,
12 place : MM1 ! Place
13 to
14 tV2 : MM2 ! PTArc (
15 dst <− transition
16)
17 }

4.3 Adaptation Transformation Execution

This step simply executes the generated adaptation transformation. The
transformation takes any terminal model M1 and generates a terminal model
M2.

5 Experimental Validation

Section 5.1 describes the prototype platform. Section 5.2 presents the experimen-
tal settings including dataset and procedure. Section 5.3 provides the metrics to
evaluate the results. Section 5.4 discusses the experimentation results. Finally,
Section 5.5 shows the results of applying the EMF Compare tool to the running
examples, and compares them to our results.

www.manaraa.com

Managing Model Adaptation by Precise Detection of Metamodel Changes 45

5.1 Prototype Implementation

We implement the prototype on the AMMA platform [2]. More specifically, we
use the AtlanMod Model Weaver (AMW) [26] to work with matching mod-
els, and we specify the heuristics and HOT in ATL. The HOT generates the
adaptation transformation in ATL code. In particular, we develop a library that
contains the heuristics described in Section 4.1.

5.2 Experimental Settings

Data set. We have results from experimentations which use 8 versions of the
Netbeans Java metamodel, and 6 versions of a Petri Net metamodel provided
by [14]. For the sake of readability, we just present the results in applying our
approach on three versions of each metamodel. These versions are chosen because
they contain significant changes. In the Java example, we choose the versions
1.12, 1.13, and 1.15. In the Petri Net example, we use the versions 0, 1, and
2. Table 1 shows the number of elements (classes, attributes and references)
contained in the versions. We match the following couples of versions: 0 – 1, 0 –
2, 1.12 – 1.13, and 1.12 – 1.15.

Table 1. Metamodel elements

Example PetriNet Java
Version 0 1 2 1.12 1.13 1.15

Elements 11 11 21 255 256 258

Procedure. We tested different matching configurations until obtaining the
strategies more suitable for the examples. Garces et al. [1] presents lessons
learned from this selection process. We have picked up the matching strategies
(A and B) for matching the Petri Net metamodels and the Java metamodels,
respectively. The heuristics that include each strategy are:

– Matching Strategy A: Creation by type, Similarity by internal proper-
ties, Context similarity, Threshold, Differentiation, Nesting, and Complex
changes.

– Matching Strategy B: Creation by type and fullname, Similarity by inter-
nal properties, Context similarity, Threshold, Differentiation, Nesting, and
Flattening.

This selection should not question the applicability of our approach, but show
that the matching accuracy and performance highly depends on the metamodels.

5.3 Metrics

We have measured the matching step accuracy by applying three metrics [27]:
Precision(x) = CorrectFound(x)

TotalFound(x) , Recall(x) = CorrectFound(x)
TotalCorrect(x) , and Fscore(x) =

2∗Recall(x)∗Precision(x)
Recall(x)+Precision(x) .

www.manaraa.com

46 K. Garcés et al.

The x denotes equivalences, additions/deletions, or complex changes. Besides
additions and deletions, we have not evaluated other simple changes because
these require no elaborated adaptation transformations. The expected values of
these metrics are between 0 and 1. The higher is the precision value, the smaller
is the set of wrong mappings. The higher is the recall value, the smaller is the
set of the mappings that have not been found. Fscore is a global measure of the
matching quality. A high fscore value indicates a matching of high quality.

We have identified the correct equivalences and changes in two ways. In the
Petri Net example, we manually discovered the changes. In the Java example,
we relied on the changes logged in the Netbeans repository. We also considered
other manually discovered changes. We remarked that some repository logs do
not report all the performed changes.

Besides matching accuracy, we have measured the matching process perfor-
mance. This has been executed on a machine with Intel Core 2 Duo (2.4 GHz)
and 1GB RAM.

5.4 Results

Matching accuracy. Fig. 6 gives the prototype’s accuracy. The histograms dis-
play measures (precision, recall, fcore) for each selected couple of version. The
three bars (from left to right) show the accuracy of equivalences, additions/dele-
tions, and complex changes. Some bars are missing because certain couples of
versions contain no deletions/additions or complex changes.

0

20

40

60

80

100

120

PN 0-1P N 0-2J ava 1.12 -
1.13

Java 1.12 -
1.15

Couples of versions

R
ec

al
l (

%
)

Equivalence

Add/Del

Complex Change

0

20

40

60

80

100

120

PN 0-1P N 0-2J ava 1.12 -
1.13

Java 1.12 -
1.15

Couples of versions

Pr
ec

is
io

n
(%

)

0

20

40

60

80

100

120

PN 0-1P N 0-2J ava 1.12 -
1.13

Java 1.12 -
1.15

Couples of versions

F-
m

ea
su

re
 (%

)

Fig. 6. Matching accuracy results

www.manaraa.com

Managing Model Adaptation by Precise Detection of Metamodel Changes 47

The results show that the prototype achieves a high accuracy not only in de-
tecting the correct equivalences, additions/deletions, but also in detecting com-
plex changes. Taking fscore as an example, the percentage of correct equivalences,
and additions and deletions ranges from 99%-100%, and 90%-100%, respectively.
Averanging accross all experiments, the fscore of complex changes is 100%. In
particular, our prototype fails in identifying additions/deletions instead of equiv-
alences (1% of cases).

Even though we have applied our approach to only a small number of test
cases (mostly because of model availability restrictions), this number is sig-
nificant in comparison with test cases of other closely related approaches like
[14][15][16][17][18]. We are looking for other benchmarks in open-source projects,
and we hope to provide more validation material in the future.

Performance. In the Petri Net example, the matching process consumes less
than 1 second. In the Java example, the matching process approximately takes
10 seconds. A table containing the execution times of the heuristics in detail can
be find in [1]. Even if the matching step consumes a relevant amount of resources,
we should remember that this process generates an adaptation transformation
that can be used several times.

5.5 EMF Compare versus Our Approach

We have compared the metamodel changes computed by EMF Compare to our
results. We chose EMF Compare because this is a prototype completely available
to compare metamodels. Table 2 shows the fscore that EMF Compare and our
approach, denoted by i. and ii., deliver on the Petri Net (couple 0-2) and Java
(couple 1.12 - 1.15) examples. While EMF Compare is fairly good for identifying
additions and deletions, this fails in rendering them as isolated actions. Because
model adaptation automation needs to distinguish complex changes (i.e., not
only simple changes), our approach is more appropriate for this purpose than
EMF Compare.

Table 2. Fscore EMF Compare (i.) - Our approach (ii.)

Example PetriNet Java
Couples of versions 0-2 1.12-1.15

Approach i. ii. i. ii.
Additions-Deletions 0.8 1 1 0.9
Complex changes 0 1 0 0

6 Conclusions

In this paper, we presented an MDE approach for adapting models to their evolv-
ing metamodel. Matching strategies compute equivalences and changes between
two metamodels by executing a set of heuristics. These equivalences and differ-
ences are saved in a matching model. A Higher-Order Transformation translates

www.manaraa.com

48 K. Garcés et al.

this matching model into an executable adaptation transformation. We reported
the performance and precision of our approach which are pretty good, and may
be even further improved by means of tuning. We also compared our solution
to related works, and we showed that no other work known to us covers fully
the problem as we identified it (e.g., most other works only cover evolution
with available trace of changes). Moreover, our validation covers a wider spec-
trum than existing works: a relatively simple case from the literature (i.e., a
Petri Net metamodel), but also a real-life scenario (i.e., a Java metamodel). We
have used the family of heuristics to design the constructs of the AtlanMod
Matching Language (AML), a Domain-Specific Language (DSL) for expressing
matching strategies [28]. AML allows to express not only strategies to match
two metamodels, but also any pair of models. By using this language, we hope
to implement matching strategies more easily, and extract further guidelines on
proper parametrization of them.

Acknowledgements

This work has been partially funded by the ANR project FLFS.

References

1. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Adaptation of models to evolving
metamodels. Technical report, INRIA (2008)

2. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks.
In: OOPSLA 2006, Portland, OR, USA, October 22-26, pp. 602–616. ACM, New
York (2006)

3. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

4. Do, H.H.: Schema Matching and Mapping-based Data Integration. Ph.D thesis,
University of Leipzig (2005)

5. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams.
SIGSOFT Softw. Eng. Notes 28(5), 227–236 (2003)

6. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differenc-
ing. In: ASE 2005, pp. 54–65. ACM, New York (2005)

7. Girschick, M.: Difference detection and visualization in UML class diagrams. Tech-
nical report, TU Darmstadt (2006)

8. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large mod-
els. In: Crnkovic, I., Bertolino, A. (eds.) ESEC/SIGSOFT FSE, pp. 295–304. ACM,
New York (2007)

9. Sriplakich, P., Blanc, X., Gervais, M.P.: Supporting collaborative development in
an open MDA environment. In: ICSM, pp. 244–253. IEEE Computer Society, Los
Alamitos (2006)

10. Wenzel, S., Kelter, U.: Analyzing model evolution. In: Robby (ed.) ICSE,
pp. 831–834. ACM, New York (2008)

11. Eclipse.org: EMF Compare (2008),
http://wiki.eclipse.org/index.php/EMF_Compare

http://wiki.eclipse.org/index.php/EMF_Compare

www.manaraa.com

Managing Model Adaptation by Precise Detection of Metamodel Changes 49

12. Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel matching for
automatic model transformation generation. In: Czarnecki, K., Ober, I., Bruel,
J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340.
Springer, Heidelberg (2008)

13. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and ist application to schema matching. In: Proc. 18th ICDE,
San Jose, CA (2002)

14. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

15. Gruschko, B., Kolovos, D., Paige., R.: Towards synchronizing models with evolving
metamodels. In: Workshop on Model-Driven Software Evolution, MODSE 2007,
Amsterdam, The Netherlands (2007)

16. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: EDOC 2008: Proceedings of the 12th IEEE Inter-
national EDOC Conference, München, Germany (2008)

17. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Automatability of coupled evolution
of metamodels and models in practice. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 645–659. Springer,
Heidelberg (2008)

18. Vermolen, S.D., Visser, E.: Heterogeneous coupled evolution of software languages.
In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 630–644. Springer, Heidelberg (2008)

19. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

20. Didonet del Fabro, M.: Metadata management using model weaving and model
transformation. Ph.D thesis, Université de Nantes (2007)

21. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

22. Eclipse.org: The ATL User Manual (2008),
http://www.eclipse.org/m2m/atl/doc/ATL_User_Manualv0.7.pdf

23. OMG: OCL 2.0 Specification, OMG Document formal/2006-05-01 (2006),
http://www.omg.org/docs/ptc/05-06-06.pdf

24. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics for
name-matching tasks. In: Kambhampati, S., Knoblock, C.A. (eds.) Proceedings of
Workshop on Information Integration on the Web, IIWeb 2003, Acapulco, Mexico,
pp. 73–78 (2003)

25. University of Princeton: Wordnet: An Electronic Lexical Database,
http://wordnet.princeton.edu/

26. Didonet Del Fabro, M., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: A
generic model weaver. In: Proceedings of the 1ère Journée sur l’Ingénierie Dirigée
par les Modèles, IDM 2005 (2005)

27. Rijsbergen, C.J.V.: Information Retrieval. Butterworths (1979)
28. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: A Domain Specific Language for

Expressing Model Matching. In: Proceedings of the 5ère Journée sur l’Ingénierie
Dirigée par les Modèles, IDM 2009 (2009)

http://www.eclipse.org/m2m/atl/doc/ATL_User_Manualv0.7.pdf
http://www.omg.org/docs/ptc/05-06-06.pdf
http://wordnet.princeton.edu/

www.manaraa.com

A Pattern Mining Approach Using QVT

Jens Kübler1 and Thomas Goldschmidt2

1 aquintos GmbH
Karlsruhe, Germany

kuebler@aquintos.com
2 FZI Research Center for Information Technology

Karlsruhe, Germany
goldschmidt@fzi.de

Abstract. Model Driven Software Development (MDSD) has matured over the
last few years and is now becoming an established technology. Models are used
in various contexts, where the possibility to perform different kinds of analyses
based on the modelled applications is one of these potentials. In different use
cases during these analyses it is necessary to detect patterns within large mod-
els. A general analysis technique that deals with lots of data is pattern mining.
Different algorithms for different purposes have been developed over time. How-
ever, current approaches were not designed to operate on models. With employing
QVT for matching and transforming patterns we present an approach that deals
with this problem. Furthermore, we present an idea to use our pattern mining
approach to estimate the maintainability of modelled artifacts.

1 Introduction

Model Driven Software Development (MDSD) matured over the last years and is
becomming more and more adopted within industry. One of the strengths of MDSD
is that it yields the possibility to not only use models as basis for the implementation of
a system but rather allow to do different kinds of analysis on an abstract level. Analysis,
such as maintainability and complexity measures are based on analysing models. Mea-
sures such as frequently occurring constructs are based on finding patterns within these
models. If model driven techniques are widely employed within an enterprise models
get larger and larger. Finding patterns witin these potentially huge models then becomes
a time consuming task. Optimized pattern mining algorithms would be required to cope
with this problem.

Pattern mining on databases is used in different contexts to identify frequent pat-
terns within structured data [1]. Algorithms for this kind of knowledge discovery have
been highly optimized to be able to deal with huge amounts of data. Furthermore, ap-
proaches have been developed to do pattern mining on object structures [2]. However,
none of these approaches can deal with generic models based on different metamodels.
On the other hand, model transformation engines like M2ToS[3] or specifications like
Query/View/Transformations (QVT)[4] provide some means of executing queries on
the model as an integral part to do rule matching. They allow for specification of object
patterns and retrieval of matching results.

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 50–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

A Pattern Mining Approach Using QVT 51

Therefore we propose to use a transformation based approach to do analysis through
pattern mining on models with the known pattern mining algorithm “Apriori” and draft
a metric that may give a quality indicator that is automatically collectible and compa-
rable between models. Apriori aims at identifying sets of items that frequently occur
together focusing on those that are not contained within any other itemset. These item-
sets are also known as maximum frequent itemsets which must be more frequent than a
parameter given to the algorithm known as support. Identification of maximum frequent
itemsets is archived through an iterative generate-and-test approach. To achieve this for
models we use pattern matching facilities defined by QVT specification to formulate
and execute queries on models. We apply an object oriented version of the Apriori al-
gorithm to detect frequent patterns within models and leverage the GenMax heuristic to
speed up their detection.

Through an experimental study on Ecore models we show that patterns from simple
structured classes can be mined within acceptable timeframes whereas mining complex
structured classes requires more optimization to the algorithm in the future to be effi-
ciently mined. We enlist several hot spots where these optimizations may be introduced.

Furthermore, we present initial work towards an application of our model based pat-
tern mining approach to estimate the maintainability of models. A large part of the
complexity of a software product and therefore also it’s models is comes through the
process of needing to understand patterns that occur within these models. Thus, we
propose to emulate human information processing through pattern mining on models.

The structure of this paper is as follows. Section 2 discusses related work and anal-
ysis its shortcomings. The general pattern mining approach is described in Section 3.
Section 4 raises the pattern mining approach to the model level. First experimental re-
sults of the pattern mining on models are presented in Section 5. Section 6 presents an
initial approach to estimate the maintainability of models using pattern mining. Finally,
Section 7 concludes and points out future work.

2 Related Work

The Apriori-Algorithm used to mine patterns was extended beyond relational data struc-
tures to be able to cope with object structures. While [5] presents an approach to find
frequent tree structures within XML data, [6] also includes mining on graph struc-
tures. However, both approaches do not account for the structures that appear in ob-
ject oriented structures, such as inheritance. A more interesting appraoch is presented
in [2], it finds frequent item sets within object structures including inheritance, classes
attributes and their values. We use this approach as a basis for our metamodel indepen-
dent, generic pattern mining approach.

In [7] Zhao et al. present a graph-transformation framework for pattern level de-
sign validation and evolution. By using key structures it is tried to locate the searched
design patterns. Furthermore, it is possible to evolve the defined patterns using graph-
transformation. However, in the the focus of [7] is not in identifying possible patterns
within a model but rather finding predefined ones.

Mazón et al introduce in [8] QVT transformation rules that allow to automatically ob-
tain a logical representation tailored to a multidimensional database technology.

www.manaraa.com

52 J. Kübler and T. Goldschmidt

However, those transformations aim at generating models for multidimensional data-
bases from a UML profile that was created as a platform independent model for the
modelling of multidimensional databases. Their approach is not concerned with identi-
fying patterns within models themselves.

3 General Pattern Mining Approach

We understand patterns within the context of model driven software development as
frequently occurring object graphs. Therefore pattern mining is the automated process
of finding frequently occurring object graphs within model instances.

3.1 Patterns and Pattern Mining

Pattern mining as a technique to knowledge discovery has received much attention in
recent decades and several algorithms like apriori and FP-Tree have been proposed to
cope with the computationally complex problem. We will focus on the apriori approach
for which numerous extensions have been introduced. The following paragraphs infor-
mally introduce apriori and discuss how patterns that are rather huge can be addressed.
The aforementioned object oriented extension to apriori will be discussed in detail as
we will modify it to handle huge patterns.

3.2 Apriori Algorithm

Informally the classic apriori algorithm is often motivated through items of a warehouse
that are bought together at the same time. Time points are identified through database
transaction ids whereas bought items resemble a set belonging to a transaction id. Apri-
ori aims at identifying sets of items that frequently occur together focusing on those
that are not contained within any other itemset. These itemsets are also known as max-
imum frequent itemsets which must be more frequent than a parameter given to the
algorithm known as support. Identification of maximum frequent itemsets is archived
through an iterative generate-and-test approach. Candidate itemsets will be generated
and tested for frequency above minimum support at each iteration step and discarded,
if their frequency is below minimum support. Figure 1 shows an example how four
items A, B, C, D may be iteratively combined to candidate itemsets and tested for fre-
quency. Assuming that the whole itemset of ABCD is frequent, apriori generates and
tests 14 candidates for frequency which may be acceptable for four items in terms of
runtime performance. However research has identified that 2k − 2 itemsets may have to
be generated and tested, given k as the count of possible items. This means that apriori
scales exponentially with the number of items especially if frequent itemsets contain
numerous items. These itemsets are also known as long patterns.

Several works such as [9] and [10] introduced heuristics to cope with this poten-
tially time consuming task. Instead of iteratively generate and test all candidate sets the
heuristics proposed explicitly calculate all maximum frequent itemsets. Their key con-
tribution is to enumerate all candidate itemsets as shown in figure 2. The enumeration
spans a tree which resembles the search space of the algorithm. This representation of
search space allows for the application of known tree traversals such as depth-first or

www.manaraa.com

A Pattern Mining Approach Using QVT 53

Fig. 1. Classical apriori candidate set generation: Within each iteration frequency is determined
for all combinations of candidate sets

Fig. 2. The complete enumeration of all possible solutions for frequent itemsets containing four
elements A, B, C, D. The enumeration spans a tree which can be searched by known tree traver-
sal algorithms.

breadth-first. Leveraging the fact that any frequent itemset is contained at least within
one maximal frequent itemset evaluations show that many candidates can effectively be
pruned during traversal thus reducing search space. As mining on graphs is computa-
tionally more complex than mining on itemsets [11], heuristics are even more required
to efficiently mine patterns.

Mining on object graphs has been proposed in [2]. The authors incorporate object-
oriented concepts like inheritance, classes and attribute values into their algorithm. The
algorithm is outlined in Algorithm 1 and follows the classic generate-and-test paradigm
of apriori. Given database D, a query class Cq and minimum support of minsupp
the algorithm finds all patterns having a support greater than minsupp. Generation of
candidate patterns is being split into a two step process of a linear generation step and a
nonlinear combination step. Testing is then applied to each of the linear and nonlinear
candidate patterns until no further candidate pattern is frequent.

Object oriented extensions reside within the linear extension phase of the algorithm
as can be seen in Algorithm 2. Based upon the type of the patterns last extension the
subsequent extension will be determined. If the type is a primitive type, i.e. an integer,

www.manaraa.com

54 J. Kübler and T. Goldschmidt

Input: database D, query class Cq , minimum support minsupp
Output: frequent patterns having support greater than minsupp
LC1 = {X0 : Cq}1

count support s for pattern X0 : Cq of LC12

if s < minsupp then3

return ∅4

else5

L1 = LC16

N1 = ∅7

for k = 1; Lk ∪ Nk �= ∅; k = k + 1 do8

LCk+1 = linear extension of patterns Lk9

NCk+1 = combination of patterns from Lk and Nk10

count support s of patterns in LCk+1 and NCk+111

Lk+1 = patterns LCk+1 having s > minsupp12

Nk+1 = patterns NCk+1 having s > minsupp13

end14

return
⋃

k(Lk ∪ Nk)15

end16

Algorithm 1. Object frequent pattern mining taken from [2]: X denotes variables and
T their type

for each instance value a new patterns will be generated extending the current pattern
with the current instance value. If the type is a class two extensions will be considered.
First for each attribute a new pattern is generated by extending the current pattern with
the attribute. Second for each subclass a new pattern is generated by extending the
current pattern with the current subclass. If the attribute type is a collection the pattern
will be extended by the contained type of the collection.

4 Pattern Mining On Models

To mine patterns from models we propose to combine the previously presented object
mining approach with the heuristic GenMax algorithm presented in [10]. This heuris-
tic has been evaluated in the same work to outperform other known heuristics like
Mafia or MaxMiner, if pattern length distributes between 10 and 25 items given a low
support.

Because the GenMax approach is based on the complete set enumeration of all items
and oo-apriori alternately executes a linear extension and non-linear combination the
search-space is extended continuously. To prevent this extension and be able to apply
the GenMax heuristic the linear extension and the non-linear combination is separated
as it is shown in Algorithm 3.

To execute the pattern mining on models we used an implementation of the QVT
Relational standard called medini QVT [12]. The template expressions that are used to
do the matching in QVT-R represent an object pattern which can be used for pattern
mining.

www.manaraa.com

A Pattern Mining Approach Using QVT 55

Input: linear frequent patterns Lk

Output: linear candidate patterns LCk+1

forall pattern ∈ Lk do1

LCk+1 = ∅2

Xi : Ti = last extension of pattern p3

if Ti is primitive type then4

foreach instance value I of Ti do5

extend pattern p with Xi : Ti = I6

add newly extended pattern to candidate set LCk+17

end8

else if Ti is a class then9

foreach subclass Tj of Ti do10

extend pattern p with subclass Xi : Tj11

add newly extended pattern to candidate set LCk+112

end13

foreach attribute a of class Ti do14

extend pattern p with attribute a : Tj : Xi : Ti.a = Xj : Tj15

add newly extended pattern to candidate set LCk+116

end17

else if Ti is collection then18

extend pattern p with type that is contained within collection Tj :19

Xi : Ti = {Xj : Tj}
add newly extended pattern to candidate set LCk+120

end21

end22

return LCk+123

Algorithm 2. Linear pattern extension taken from [2] : X denotes variables whereas
T denotes its type

Listing 1.1. Example pattern

1 enforce domain source pattern : ecore : :EClass {
2 interface = false , eAnnotations = undefined ,
3 abstract = true , eIDAttribute = undefined ,
4 ePackage = package : ecore : :EPackage { nsPrefix = ’wsdl’ ,
5 name = ’wsdl’ ,
6 eFactoryInstance = factory : ecore : :EFactory {
7 ePackage = f package : ecore : :EPackage { }
8 } ,
9 eSuperPackage = undefined ,

10 eAnnotations = p annotations : ecore : :EAnnotation { }
11 } ,
12 nsURI = ’http : / /www. eclipse .org/wsdl/2003/WSDL’ ,
13 eClassifiers = classifier : ecore : : EClassifier{ } ,
14 name = name : String { }
15 };

www.manaraa.com

56 J. Kübler and T. Goldschmidt

Input: database D, query class Cq , minimum support minsupp
Output: frequent patterns having support greater than minsupp
LC1 = {X0 : Cq}1

count support s for pattern X0 : Cq in LC12

if s < minsupp then3

return ∅4

else5

L1 = LC16

N1 = ∅7

for k = 1; Lk �= ∅; k = k + 1 do8

LCk+1 = linear extension of patterns from Lk9

count support s for patterns in LCk+110

Lk+1 = patterns of LCk+1 having s > minsupp11

end12

FP = GenMax(
⋃

k Lk, minsupp)13

return FP14

end15

Algorithm 3. Object frequent pattern mining extended by GenMax heuristic

QVT transformations themselves are also available as a model representation and can
be executed based on this representation. All patterns can therefore be represented as
relational rules that match exactly its pattern if executed as transformation. Using higher
order transformations it becomes also possible to create these model patterns using
model transformations. Therefore the representation of patterns using QVT-R relations
serves two purposes. One being the representation of the patterns and the other being
directly executable to recognize this pattern in models. An example of such a pattern
can be seen in Listing 1.1. The same pattern modelled for M2ToS but in a more human
readble form can be seen in figure 3.

Using the ObjectTemplateExp class from the QVT-R metamodel it is possible
to create patterns that match objects using their types. PropertyTemplateItems
are used to define properties of objects. They reference either otherObjectTemplate
Exp elements to represent object relations or they contain primitive values, such as in-
tegers, that can be expressed using literals. The CollectionTemplateExp class
can be used to match elements within collections using a combination of quantifiers
and conditions. However, the precise semantics of the CollectionTemplateExp
is subject to discussion [13] which is why medini QVT does not implement it. There-
fore, the CollectionTemplateExp is not used within the iterative generation of
patterns.

An overview on the pattern mining approach is depicted in Figure 4. The process is
defined across two different metalevels. First the transformations representing patterns
are run against the model that should be mined. This takes place on the model level.
Based on the outcome of this matching step the pattern transformations are extended
and combined using transformations that work on the models of the pattern transforma-
tions. This can be considered as an operation one metalevel above, as these patterns are
treated not as runnable transformations but rather as models that are transformed by the
extension/combination transformations. For these higher-order (as they produce again

www.manaraa.com

A Pattern Mining Approach Using QVT 57

Fig. 3. Pattern from listing 1.1 modelled as M2ToS Pattern

transformations) transformations the information from the metamodel of the currently
mined model are taken into account. For example, during the extension phase it is nec-
essary to know where the patterns can be extended. This information can be found in
the metamodel. The modified set of patterns is then again queried for frequency within
the model.

4.1 Linear Extension

The linear extension of patterns may lead to cycles resulting in a non-termination of
the extension algorithm. Therefore, it is necessary to detect and prevent this situation.
For example, a package having a reference to its contained classes where the classes
also reference the package may lead to such a cycle. To prevent such extensions an
additional check is needed during the extension of attributes. It has to be checked if
instances of the extended attribute value already appeared in previous extensions. In
this case the extension has to be stopped. Primitive attribute types can be excluded from
this check, only class typed attributes are relevant here.

During linear extension new patterns are created for each attribute resulting in pat-
terns that resemble a linked list. If a new attribute is added to the list only those attributes
need to be checked for cycles where types of both attributes conform to each other.
However cycle detection itself has to be performed on the model level as potentially
(allowed due to the structure of the metamodel) possible cycles may not necessarily oc-
cur within the model. Model elements are, due to the defined pattern within this phase
a directed acyclic graph and therefore a tree. Cycle detection can then be implemented
using a depth first search algorithm.

www.manaraa.com

58 J. Kübler and T. Goldschmidt

 Pattern Transformation

model

r/w access

Legend

active component

communication

R request direction

M2M Transformation Engine

Linear Extension
Transformation

Non-Linear Combination
Transformation (GenMax)

transforms

Mined Model Meta-model of
Mined Model

instance of

input for

dependency

Pattern 1

Model Level (M1) Meta-Model Level (M2)

R
executes

R
executes

input for

Pattern n

Fig. 4. Pattern mining with a model transformation engine

As OCL is an integral part of the QVT specification and capable of querying equality
of model elements it is favourable to use it for cycle detection. Unfortunately OCL has
no access to the metalevel of the used metamodel which is why a programmatic creation
of OCL queries is required based upon the metamodel representation of the pattern. An
example of such a cycle detection query is shown in 1.2 which detects the previously
mentioned class and package cycle within ecore models.

Listing 1.2. Cycle detection using OCL: For all EClasses each ePackage is checked if current
class is contained within the packages’ eClassifiers

1 ecore : :EClass . allInstances ()−>
2 i terate (
3 var0 : ecore : :EClass ;
4 acc0 : Set (Boolean) = Set{} | acc0−>including (
5 (var0 .ePackage.oclAsType(ecore : :EPackage) . eClassifiers−>
6 i terate (
7 var1 : ecore : : EClassifier ;
8 acc1 : Set (Boolean) = Set{} | acc1−>including (
9 (var1 = var0)

10))−>
11 exists (b1 : Boolean | b1 = true)
12)
13))−>
14 exists (b0 : Boolean | b0 = true)

www.manaraa.com

A Pattern Mining Approach Using QVT 59

4.2 Non-linear - GenMax

Union of Graphs Like other heuristics the GenMax algorithm requires the union of
elements of a set to create frequent itemsets. To be able to exploit the performance
advantages of the GenMax algorithm on object-oriented pattern mining the union needs
to be defined upon object graphs. As mentioned before cycle detection during the linear
phase prevents generation of cyclic graphs as patterns. Therefore it is sufficient to define
union on trees. As patterns that are created by the algorithm are composed of classes,
attributes and instance values union has to be considered for these elements.

In contrast to unstructured sets the union of typed trees is not defined in all cases.
For example, consider two classes with a different type which are not conform to each
other but have a common base class. The union of these classes is undefined iff there
is no type that contains the attributes of both classes. Therefore, a union of typed trees
first of all has to account for their types. Formally, the union of two classes C1 and C2
having the respective types T1 and T2 is defined exactly when there is a class C being
of type T where T conforms both to T1 and T2.

C1 ∪ C2 =

{
C : T∪, ∃T∪ : T∪ conforms to T1 ∧ T∪ conforms to T2

⊥ else

Note that if multiple inheritance is allowed a type T∪ may exist so that T∪ �= T1 ∧
T∪ �= T2. For single inheritance, the union corresponds to the most specific type.

As patterns may contain a partial set of the attributes of a class the union of attributes
has to be considered, too. Two different cases of attribute union may occur. In the first
case attribute names of the patterns to be unified differ so that the union contains both
attributes and is therefore defined. In the second case the attribute names are equal. As
attributes may either single or multi-valued these cases need also to be treated sepa-
rately. If the attribute is single-valued the union can be done recursively from this point
on and is defined iff the result of the recursive union is defined. If the attribute is multi-
valued, union is defined, iff collections are interpreted as sets. This is a limitation in
the sense that semantics of certain collections like sequences are discarded because the
semantics of their union may be ambiguous. For example consider a sequence of ele-
ments A, B and a sequence of elements A, C. A union of these sequences may result in
several new sequences like A, B, A, C or A, A, B, C effectively requiring a cross prod-
uct between all elements to cover a full union. For the time being we defer a thorough
investigation of this situation to future work.

Another case to consider is the union of patterns containing primitive instance values
which may also be undefined. Suppose an attribute A of type Integer. Furthermore,
suppose a pattern that contains attribute A having value I1 = 0 and within another
pattern having value I2 = 1. A union of this attribute is not possible because no unique
value can be used.

Ordering of Patterns. A complete enumeration of all patterns is the foundation for
the GenMax algorithm. A requirement to the algorithm is that the enumeration must be
strictly totally ordered. For simple sets an order is mostly either defined lexically or by
the order of primitive values. As in our case patterns are typed trees ordering has to be
defined upon these.

www.manaraa.com

60 J. Kübler and T. Goldschmidt

It is worth to mention that the GenMax algorithm strictly relies upon the ordering
and not upon the contents of items to be ordered. Therefore we can choose one order
out of several possible orders that may be defined for object graphs. In our preliminary
version we order patterns starting with their root nodes based upon their class types.
We order incompatible class types according to their class name whereas compatible
class types are ordered according to the most general class type. If class types match,
we order patterns according to their attributes. First we sort attributes of both classes by
name. If names mismatch, ordering is determined by their lexicographical order. If both
names match, we apply the described ordering recursively to both attributes. If attribute
types are primitive we resort to their natural ordering.

We consider our chosen order preliminary as a order may have significant impact on
the performance of the heuristic. Initial investigation suggests that query times differ
significantly depending on the structure of mined patterns therefore affecting overall
performance.

5 Experimental Results

5.1 Setup

All our experiments were performed on a 2.33GHz Intel Xeon E5545 dual quad-core
processor with 4GB physical memory, running Debian Etch 64bit and Sun Java 1.5.0.11.
As the current implementation is not capable of using multiple cores only one out of
eight cores were used for mining. The application was given a fair amount of 3GB
RAM as the mining algorithm does not use tertiary memory, yet. The times were re-
ported by the logging framework Log4j as it is known to cause low impact upon total
runtime performance.

Although our implementation is not restricted to any kind of metamodel, we chose
ecore model instances for evaluation as there are many models with different character-
istics available within the eclipse project. We focused our evaluations on two distinc-
tive classes of the ecore model namely “EAnnotation” and “EClass”. We consider class
“EAnnotation” as structurally weak as it contains only seven attributes and references
whereas class “EClass” is considered structurally strong having 24 attributes and refer-
ences. Mining “EAnnoation” is expected to be a basic task whereas mining “EClass” is
expected to be a complex task.

To estimate the impact of the amount of class instances mining was performed upon
three different models for each of the considered classes. Models were retrieved from
several CVS repositories from within the eclipse project. For class “EAnnotation” mod-
els BPEL, GMFGEN and UML (26, 229, 3017 EAnnotations) were taken into account.
Models used for mining on class “EClass” were EMOF, XSD and UML (21, 56, 243
EClasses).

5.2 Results

An example of a mined pattern from an “EAnnotation” can be seen in Listing 1.3. This
pattern is one out of three frequent patterns which was mined from the Eclipse UML

www.manaraa.com

A Pattern Mining Approach Using QVT 61

model given a support of 10%. Annotations are dominantly used for documentation
and as this pattern shows many elements are documented with the same documentation
string of “The cache of context-specific information.”.

Listing 1.3. One out of three patterns mined with 10 % support upon the UML model

1 enforce domain source var8609 : ecore : :EAnnotation {
2 details = var8610 : ecore : :EStringToStringMapEntry {
3 value = ’The cache of context−specific information . ’ ,
4 key = ’documentation ’
5 },
6 source = ’http : / /www. eclipse .org/emf/2002/GenModel’ ,
7 eModelElement = var8611 : ecore : :EModelElement {
8 eAnnotations = var8612 : ecore : :EAnnotation { }
9 }

10 };

The overall performance of our implementation is shown in table 1. As expected
structure weak “EAnnotation” can be mined much faster than structure strong “EClass”
for all models. Mining patterns of class “EAnnotation” completed within acceptable
time delivering frequent patterns. The time to mine frequent patterns increased if sup-
port was lowered. On the other hand mining class “EClass” is such a time consuming
task that mining could not be completed due to memory shortage. Even by applying a
rigorous filter that discards all class attributes which names begin with eAll and limiting
the generation of linear patterns to 20 mining could not be completed for some models
in case of low support.

Table 1. Overall performance of the implementation mining EAnnotations (EAn.) and EClasses

E
co

re
M

od
el

M
in

in
g

C
la

ss

Su
pp

or
t%

To
ta

lt
im

e
(M

M
:S

S)

M
od

el
Q

ue
ri

es
#

Fr
eq

ue
nt

Pa
tte

rn
s

#
L

im
it

#
Fi

lte
r

E
co

re
M

od
el

M
in

in
g

C
la

ss

Su
pp

or
t%

To
ta

lt
im

e
(M

M
:S

S)

M
od

el
Q

ue
ri

es
#

Fr
eq

ue
nt

Pa
tte

rn
s

#

L
im

it
#

Fi
lte

r

BPEL EAn. 10% 0:01 70 1 ∞ – EMOF EClass 95% 0:02 222 1 20 w/o eAll
GMFGEN EAn. 95% 0:04 271 1 ∞ – EMOF EClass 75% 0:05 220 1 20 w/o eAll
GMFGEN EAn. 75% 0:04 277 1 ∞ – EMOF EClass 50% 0:04 376 2 20 w/o eAll
GMFGEN EAn. 50% 0:04 284 1 ∞ – EMOF EClass 25% N/A N/A N/A 20 w/o eAll
GMFGEN EAn. 25% 0:04 284 1 ∞ – XSD EClass 95% 0:03 228 1 20 w/o eAll
GMFGEN EAn. 10% 0:21 1663 4 ∞ – XSD EClass 75% 0:07 220 1 20 w/o eAll

UML EAn. 95% 0:12 18 1 ∞ – XSD EClass 50% N/A N/A N/A 20 w/o eAll
UML EAn. 75% 2:06 1681 1 ∞ – UML EClass 95% 0:14 223 1 20 w/o eAll
UML EAn. 25% 2:09 1681 1 ∞ – UML EClass 75% 0:27 620 2 20 w/o eAll
UML EAn. 10% 5:41 4126 3 ∞ – UML EClass 50% 13:16 214 1 20 w/o eAll
UML EAn. 5% 10:21 5388 3 ∞ – UML EClass 25% N/A N/A N/A 20 w/o eAll

www.manaraa.com

62 J. Kübler and T. Goldschmidt

6 Applying Pattern Mining to Estimate Maintainability of Models

Maintainability has been identified as a key factor for software development costs and
may account for up to 80% of total costs [14]. Therefore measuring maintainability and
in a broader sense software quality has been subject to research both within functional
as well as object oriented software development to improve software quality and re-
duce maintenance costs. While metrics for measuring object oriented maintainability
have been defined, model driven software development (MDSD) is still lacking this key
component. Only selected metamodels such as the Unified Markup Language (UML)
have been investigated with regards to quality. Comprehensive, comparable and auto-
matically collectible metrics that show strong correlations between measured quality
factors are required to ensure low maintainability costs.

Focusing on object oriented methodologies attempting to measure software quality
led to the definition of metric suites such as those of Chidamber and Kemerer [15]
and metrics for object-oriented design (MOOD) [16]. The suites have been adopted to
UML with restrictions in [17] and [18] resulting in a weak external validity of measures.
Although this drawback could be accepted for the sake of having similar measures at
least these metrics can not be adopted to arbitrary metamodels and model instances
thereof. Suppose model instances of a metamodel which models finite state machines.
The notion of inheritance does not exist within such a metamodel thus the metric depth
of inheritance is useless in context of finite state machines.

As a software project may employ several different domain specific languages qual-
ity issues should be addressed for all models used. Manually defining quality metrics for
each model may be a time consuming task so a generic automated approach to measure
maintainability within models seems more favorable.

Several definitions of maintainability have been proposed i.e. in IEEE 610.12 or
ISO/IEC 12207 and 14764. IEEE 610.12 defines maintainability as “the ease with
which a software system or component can be modified to correct faults, improve per-
formance or other attributes, or adapt to a changed environment.” This definition is
rather imprecise in a sense that it leaves concerned quality factors up for interpretation.
As a constructive approach to maintainability we use the ISO 9126 quality model and
follow this interpretation as maintainability being composed of stability, analysability,
changeability and testability. We focus our efforts upon analysability and use this qual-
ity factor to direct our work.

6.1 Related Work within Maintainability Metrics

Some commonly used models have been surveyed with respect to quality. Quality for
UML use case diagrams have been investigated in [19] and addressed through a check-
list for these kinds of diagrams. The Chidamber and Kemerer metric suite has been
defined for UML models in [17] by means of the Object Constraint Language (OCL).
The MOOD metric suite has been transfered to the UML in [18]. Several other metrics
such as number of aggregations or number of classes have been proposed in [20]. The
UML metamodel itself has been investigated with respect to quality attributes in [21]
with metrics such as “Average Number of Stereotypes” and “Number of Hierarchies”.
[22] defined metrics for assessing OCL expressions in a structured way through a Goal-
Question-Metric approach. Their definitions align to human cognitive concepts such as

www.manaraa.com

A Pattern Mining Approach Using QVT 63

tracing and chunking. Ideas on how to measure model transformations can be found
in [23] and [24] but up to now metrics have not been defined for model transforma-
tions, yet. However all these approaches are metamodel-specific and not generalisable
to different kinds of metamodels therefore eliminating comparability.

6.2 Pattern Mining as Maintainability Measure

Human analysis of software products are conducted either top-down or bottom-up ac-
cording to [14]. Using a top-down approach the analyst tries to apply his knowledge
about design and domain to classify the software product under analysis. In order to do
this he tries to gain an overview of the whole application. He will then successively pick
selected software segments and determine their relevance for his current mental model
of the software. Using a bottom-up approach the analyst will start reading comments
of source code or other software artifacts. The control flow of certain sections will then
be inspected sequentially and selected variables will be traced throughout the flow. The
information gained will be integrated to a mental software model which opposed to the
top-down approach does not contain any information as to why the model is charac-
terized the way it presents itself. [14] notes that top-down analysis is being conducted
more often by experts whereas bottom-up analysis is being used more often by novice
analysts.

These findings give strong indication that experts may have abstract mental patterns
at hand which are being used for analyzing the software product whereas novices must
resort to documentation. If analysability is measured in terms of time to analyze parts of
a software product the required time will be low if the analyzed parts dominantly adhere
to the expert’s patterns. On the other hand the time will be very high, if the expert can
apply only a few of his patterns or the software heavily differs from patterns known to
him. These general observations were also stated for visual patterns in [25] which is
why we propose to incorporate them into a analysability metric.

As a first step towards such a metric we propose to identify patterns automatically
through the previously defined pattern mining approach upon the abstract syntax of
models. A second step that involves determining the distance from several patterns to a
model instance will be subject to future research.

7 Conclusion and Future Work

In this paper, we presented an approach that makes use of QVT Relations transforma-
tions to execute pattern mining in order to find frequent patterns within models. Thus,
we leverage the well known mining algorithm apriori and some of its variations to
the model level. Initial evaluation showed that structurally weak classes may be mined
within a acceptable timeframe whereas mining structurally strong classes currently can
not be mined efficiently.

In short terms our future work will focus upon improving overall performance of
our approach. We identified several spots such as ordering of graph structures, usage
of graph optimized heuristics, using a different query engine like M2ToS or partially
storing the search space to tertiary memory. A more formal definition of a quality metric
based upon mined patterns will then be subject to our research as well as its validation.

www.manaraa.com

64 J. Kübler and T. Goldschmidt

Future work will investigate finding of appropriate approaches and metrics for mea-
suring the maintainability and evolution capabilities of artifacts within model-driven
environments. More precisely, a metamodel independent measurement method moti-
vated by the concept of decomposition is presented that finds frequent patterns within
models by means of automated frequent pattern mining. In our work we emphasized
that current object oriented metrics are not suitable to address maintainability within a
model driven context. We proposed a more general approach to define quality metrics
that is independent of the metamodel used.

There are also other areas where the presented pattern mining approach can be used
to detect frequent patterns in models. One idea which may give interesting results is
the analysis of user behavior during modeling. In many evolution scenarios it is crucial
to know what impact a certain change has. So, for example, in the evolution of meta-
models there are changes that have a huge impact on the instances of the metamodel.
Certain metamodel changes result in invalid instances of the metamodel. One solution
to this problem is to allow only the user to make certain refactorings to the metamodel
which have a known impact on the instances that can then be adopted accordingly. Some
refactorings, such as renaming are already known from experiences programming lan-
guages. However to find out which changes are also frequently done in some form of
a pattern, it would be interesting to use the presented pattern mining approach on the
logs of editing operations (which can also be stored as models, as e.g., in EMF with
it’s EMF-Change recording). Results of this mining might then be analyzed if possible
additional refactoring operations can be provided.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kaufmann Series
in Data Management Systems. Morgan Kaufmann, San Francisco (2000)

2. Kuba, P., Popelinsky, L.: Mining frequent patterns in object-oriented data. In: Proceedings of
the 2nd International Workship on Mining Graphs, Trees and Sequences, pp. 15–25 (2004)

3. Reichmann, C.: Graphisch notierte Modell-zu-Modell-Transformationen für den Entwurf
eingebetteter elektronischer Systeme. Ph.D thesis, University Karlsruhe (2005)

4. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation
(QVT), http://www.omg.org/docs/formal/08-04-03.pdf

5. Garboni, C., Masseglia, F., Trousse, B.: Sequential Pattern Mining for Structure-Based XML
Document Classification. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005.
LNCS, vol. 3977, pp. 458–468. Springer, Heidelberg (2006)

6. Klukas, C., Koschutzki, D., Schreiber, F.: Graph pattern analysis with patterngravisto. Jour-
nal of Graph Algorithms and Applications 9, 19–29 (2005)

7. Zhao, C., Kong, J., Dong, J., Zhang, K.: Pattern based design evolution using graph transfor-
mation. Journal of Visual Languages and Computing (JVLC) 18(4), 378–398 (2007)

8. Mazón, J.N., Pardillo, J., Trujillo, J.: Applying transformations to model driven data ware-
houses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 13–22.
Springer, Heidelberg (2006)

9. Burdick, D., Calimlim, M., Gehrke, J.: Mafia: A maximal frequent itemset algorithm for
transactional databases. In: Intl. Conf. on Data Engineering, pp. 443–452 (2001)

10. Gouda, K., Zaki, M.: Genmax: An efficient algorithm for mining maximal frequent itemsets.
Data Mining and Knowledge Discovery 11(3), 223–242 (2005)

http://www.omg.org/docs/formal/08-04-03.pdf

www.manaraa.com

A Pattern Mining Approach Using QVT 65

11. Yang, G.: The complexity of mining maximal frequent itemsets and maximal frequent pat-
terns. In: KDD 2004: Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 344–353. ACM, New York (2004)

12. ikv++: ikv++ mediniQVT, http://projects.ikv.de/qvt (last access, 20-12-2007)
13. ikv++: Discussion CollectionTemplateExp.,

http://projects.ikv.de/qvt/discussion/1/12 (last access, 06-04-2009)
14. Masak, D.: Legacysoftware. Springer, Heidelberg (2005)
15. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE Transactions

on Software Engineering 20(6), 476–493 (1994)
16. Abreu, F., Brito, R.: Objectoriented software engineering: Measuring and controlling the

development process (1994)
17. McQuillan, J., Power, J.: A definition of the chidamber and kemerer metrics suite for uml.

Technical report, National University of Ireland (2006)
18. e Abreu, F.B.: Using ocl to formalize object oriented metrics definitions. Technical report,

FCT/UNL and INSC (2001)
19. Phalp, K.T., Vincent, J., Cox, K.: Assessing the quality of use case descriptions. Software

Quality Control 15(1), 69–97 (2007)
20. Ma, H., Shao, W., Zhang, L., Ma, Z., Jiang, Y.: Applying oo metrics to assess uml meta-

models. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS,
vol. 3273, pp. 12–26. Springer, Heidelberg (2004)

21. Ma, H., Shao, W., Zhang, L., Ma, Z., Jiang, Y.: Applying oo metrics to assess uml meta-
models. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS,
vol. 3273, pp. 12–26. Springer, Heidelberg (2004)

22. Reynoso, L., Genero, M., Piattini, M., Manso, E.: Assessing the impact of coupling on the
understandability and modifiability of ocl expressions within uml/ocl combined models. In:
11th IEEE International Symposium on Software Metrics, September 19-22, 10 pp. (2005)

23. Goldschmidt, T., Kuebler, J.: Towards Evaluating Maintainability Within Model-Driven En-
vironments. In: Software Engineering 2008, Workshop Modellgetriebene Softwarearchitek-
tur - Evolution, Integration und Migration (2008)

24. Saeki, M., Kaiya, H.: Measuring model transformation in model driven development. In:
Proceedings of the CAiSE 2007 Forum at the 19th International Conference on Advanced
Information Systems Engineering. CEUR Workshop Proceedings, CEUR-WS.org, vol. 247
(2007)

25. Solso, R.L.: Cognitive Psychology. Allyn and Bacon (2001)

http://projects.ikv.de/qvt
http://projects.ikv.de/qvt/discussion/1/12

www.manaraa.com

A Language-Theoretic View on Guidelines and
Consistency Rules of UML

Zhe Chen1 and Gilles Motet1,2

1 Laboratory LATTIS, INSA, University of Toulouse,
135 Avenue de Rangueil, 31077 Toulouse, France

zchen@insa-toulouse.fr
2 Foundation for an Industrial Safety Culture,
6 Allée Emile Monso, 31029 Toulouse, France

gilles.motet@insa-toulouse.fr

Abstract. Guidelines and consistency rules of UML are used to con-
trol the degrees of freedom provided by the language to prevent faults.
Guidelines are used in specific domains (e.g., avionics) to recommend
the proper use of technologies. Consistency rules are used to deal with
inconsistencies in models. However, guidelines and consistency rules use
informal restrictions on the uses of languages, which makes checking diffi-
cult. In this paper, we consider these problems from a language-theoretic
view. We propose the formalism of C-Systems, short for “formal language
control systems”. A C-System consists of a controlled grammar and a
controlling grammar. Guidelines and consistency rules are formalized as
controlling grammars that control the uses of UML, i.e. the derivations
using the grammar of UML. This approach can be implemented as a
parser, which can automatically verify the rules on a UML user model
in XMI format. A comparison to related work shows our contribution: a
generic top-down and syntax-based approach that checks language level
constraints at compile-time.

1 Introduction

The UML (Unified Modeling Language) is a graphic modeling language devel-
oped by OMG (Object Management Group), and defined by the specifications
[1] and [2]. UML has emerged as the software industry’s dominant modeling lan-
guage for specifying, designing and documenting the artifacts of systems [3][4].

Evolving descriptions of software artifacts are frequently inconsistent, and
tolerating this inconsistency is important [5][6]. Different developers construct
and update these descriptions at different times during development [7], thus
resulting in inconsistencies. They develop multiple views on a system providing
pieces of information which are redundant or complementary. Constraints exist
on these pieces of information whose violation leads to inconsistent models. In-
consistency problems of UML models have attracted great attention from both
academic and industrial communities [8][9][10]. A list of 635 consistency rules
are identified by [11][12].

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 66–81, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

A Language-Theoretic View on Guidelines and Consistency Rules of UML 67

Guidelines, which also contain a set of rules, are often required on models
which are specific to a given context. For instance, OOTiA (Object-Oriented
Technology in Aviation) demands that “the length of an inheritance should be
less than 6” [13]. This context is domain specific. If these constraints are not
respected, the presence of faults is not sure but its risk is high. The context
can also be technology specific. For instance, “multiple inheritance should be
avoided in safety critical, certified systems” (IL #38 of [13]), if the UML models
are implemented by Java code, as this language does not provide the multiple
inheritance mechanism.

It seems that consistency rules and guidelines are irrelevant at first glance.
However, in fact, they have the same origin from a language-theoretical view.
We noticed that both of the two types of potential faults in models come from
the degrees of freedom offered by languages. These degrees of freedom cannot
be eliminated without reducing the language capabilities [14]. For instance, the
multiple diagrams in UML are useful, as they describe various viewpoints on one
system, even if they are at the origin of numerous inconsistencies. In the same
way, multiple inheritance can be implemented in the C++ language.

To prevent these risks of faults, the use of languages must be controlled. To do
it, guidelines are old and popular means in industry. However, their expression
is informal and their checking is difficult. For instance, 6 months were needed
to check 350 consistency rules on an avionics UML model including 116 class
diagrams.

This paper aims at formalizing the acceptable use of languages and proposing
a way to check the use correctness, by considering guidelines and consistency
rules from a language-theoretical view. To achieve this goal, acceptable uses of a
language are defined as a grammar handling the productions of the grammar of
the language. To support this idea, UML must be specified by a formal language,
or at least a language with precisely defined syntax, e.g., XMI in this paper. Thus,
a graphic model can be serialized. This formalism also provides a deeper view
on the origin of inconsistencies in models.

This paper is organized as follows. First, we introduce the grammar of UML
in XMI in Section 2. Then in Section 3, we define the C-System, i.e. a for-
malism containing controlling grammars that restrict the use of the grammar
of UML. We illustrate the formalism using examples in Section 4. Related work
and implementation of this approach are discussed in Sections 5 and 6. Section 7
concludes the paper.

2 The Grammar of UML in XMI

XMI (XML Metadata Interchange) [15] is used to facilitate interchanging UML
models between different modeling tools in XML format. Many tools implement
the conversion, e.g., Altova UModel� can export UML models as XMI files.

A UML model in XMI is an XMI-compliant XML document that conforms
to its XML schema, and is a derivative of the XMI document productions which
is defined as a grammar. The XML schema is a derivative of the XMI schema

www.manaraa.com

68 Z. Chen and G. Motet

productions. The XMI specification defines both the XMI schema productions
and the XMI document productions in [15].

XMI provides a mapping between a UML user model and an XML docu-
ment, and a mapping between UML (also MOF) and an XML Schema. XMI
generates an XML file using the XMI document productions, and generates an
XML schema using the XMI schema productions. Each of the two sets of pro-
ductions composes a context-free grammar in EBNF [16]. A UML user model
can be expressed using an XMI-compliant XML document that conforms to the
corresponding XML Schema, and is a derivative of the XMI document grammar.

The grammar and its productions for deriving XMI-compliant XML docu-
ments of UML models are defined in [15]. The main part of the grammar is
given here after. To make our presentation more concise, we omit declaration
and version information of XML files (and the related productions whose names
start with “1”).

To make later reasoning easier, we modified some representations of the pro-
ductions, but without changing the generative power of the grammar.

1. The choice operator “|” is used to compose several productions with the
same left-hand side into a single line in [15]. We decomposed some of these pro-
ductions into several productions without the choice operator. An original pro-
duction n having k choices might be divided into a set of productions {n i}1≤i≤k.
For example, the original production 2 with three choices was divided into the
productions 2 1, 2 2 and 2 3.

2. The closure operator “*” is used to simplify the representation of the gram-
mar in [15], but it also would make the representation of reasoning confusing.
Thus, the productions whose names start with “3” were added to replace the
productions with closure operators.

The grammar G of UML in XMI includes the following productions (each
production is labeled by a name starting with a digit):

3_1: XMIElements ::= 2:XMIElement
3_2: XMIElements ::= 2:XMIElement 3:XMIElements

2_1: XMIElement ::= 2a:XMIObjectElement
2_2: XMIElement ::= 2b:XMIValueElement
2_3: XMIElement ::= 2c:XMIReferenceElement

2a_1: XMIObjectElement ::= "<" 2k:QName 2d:XMIAttributes "/>"
2a_2: XMIObjectElement ::= "<" 2k:QName 2d:XMIAttributes ">"

3:XMIElements "</" 2k:QName ">"

2b_1: XMIValueElement ::= "<" xmiName ">" value "</" xmiName ">"
2b_2: XMIValueElement ::= "<" xmiName "nil=‘true’/>"

2c_1: XMIReferenceElement::= "<" xmiName 2l:LinkAttribs "/>"
2c_2: XMIReferenceElement::= "<" xmiName 2g:TypeAttrib

2l:LinkAttribs "/>"

www.manaraa.com

A Language-Theoretic View on Guidelines and Consistency Rules of UML 69

2d_1: XMIAttributes ::= 2g:TypeAttrib 2e:IdentityAttribs
3h:FeatureAttribs

2d_2: XMIAttributes ::= 2e:IdentityAttribs 3h:FeatureAttribs

2e: IdentityAttribs ::= 2f:IdAttribName "=‘" id "’"

2f_1: IdAttribName ::= "xmi:id"
2f_2: IdAttribName ::= xmiIdAttribName

2g: TypeAttrib ::= "xmi:type=‘" 2k:QName "’"

3h_1: FeatureAttribs ::= 2h:FeatureAttrib
3h_2: FeatureAttribs ::= 2h:FeatureAttrib 3h:FeatureAttribs

2h_1: FeatureAttrib ::= 2i:XMIValueAttribute
2h_2: FeatureAttrib ::= 2j:XMIReferenceAttribute

2i: XMIValueAttribute ::= xmiName "=‘" value "’"

2j: XMIReferenceAttribute ::= xmiName "=‘" (refId | 2n:URIref)+"’"

2k: QName ::= "uml:" xmiName | xmiName

2l: LinkAttribs ::= "xmi:idref=‘" refId "’" | 2m:Link

2m: Link ::= "href=‘" 2n:URIref "’"

2n: URIref ::= (2k:QName)? uriReference

In the grammar, the symbol “::=” stands for the conventional rewriting sym-
bol “→” in formal languages theory [17]. Each nonterminal starts with a capital
letter, prefixing a label of the related production, e.g., “2:XMIElement” is a non-
terminal with possible productions “2 1, 2 2, 2 3”. Each terminal starts with a
lowercase letter or is quoted.

As an example to illustrate the use of the grammar, Figure 1 represents a
package Root which includes three classes, where the class FaxMachine is derived
from Scanner and Printer. The core part of the exported XMI 2.1 compliant file
(using Altova UModel�) is as follows:

<uml:Package xmi:id="U00000001-7510-11d9-86f2-000476a22f44"
name="Root">

<packagedElement xmi:type="uml:Class"
xmi:id="U572b4953-ad35-496f-af6f-f2f048c163b1"
name="Scanner" visibility="public">

<ownedAttribute xmi:type="uml:Property"
xmi:id="U46ec6e01-5510-43a2-80e9-89d9b780a60b"

name="sid" visibility="protected"/>

www.manaraa.com

70 Z. Chen and G. Motet

Fig. 1. A Class Diagram Fig. 2. An Activity Diagram

</packagedElement>
<packagedElement xmi:type="uml:Class"

xmi:id="Ua9bd8252-0742-4b3e-9b4b-07a95f7d242e"
name="Printer" visibility="public">

<ownedAttribute xmi:type="uml:Property"
xmi:id="U2ce0e4c8-88ee-445b-8169-f4c483ab9160"

name="pid" visibility="protected"/>
</packagedElement>
<packagedElement xmi:type="uml:Class"

xmi:id="U6dea1ea0-81d2-4b9c-aab7-a830765169f0"
name="FaxMachine" visibility="public">

<generalization xmi:type="uml:Generalization"
xmi:id="U3b334927-5573-40cd-a82b-1ee065ada72c"
general="U572b4953-ad35-496f-af6f-f2f048c163b1"/>

<generalization xmi:type="uml:Generalization"
xmi:id="U86a6818b-f7e7-42d9-a21b-c0e639a4f716"
general="Ua9bd8252-0742-4b3e-9b4b-07a95f7d242e"/>

</packagedElement>
</uml:Package>

This text is a derivative of the XMI document productions, c.f. the previous
grammar G. We may use the sequence of productions “2a 2, 2k(Package), 2d 2,
2e, 2f 1, 3h 1, 2h 1, 2i” to derive the following sentential form:

<uml:Package xmi:id="U00000001-7510-11d9-86f2-000476a22f44"
name="Root">

3:XMIElements "</" 2k:QName ">"

Note that the production 2k has a parameter xmiName, i.e. the value of
the terminal when apply the production. In a derivation, we specify a value of
the parameter as “2k(value)”. For example, “2k(Package)” is a derivation using
2k with xmiName = “Package”. For simplicity, we consider “2k(value)” as a
terminal as a whole. We continue to apply productions, and finally derive the
XMI file previously presented.

www.manaraa.com

A Language-Theoretic View on Guidelines and Consistency Rules of UML 71

Notice that the model of Fig. 1 (both in UML and XML) does not conform to
the guidelines in OOTiA about multiple inheritance, since it uses multi-
inheritance. The model of Fig. 2 has an inconsistency: “the number of outgoing
edges of ForkNode is not the same as the number of incoming edges of JoinNode”.
In particular, JoinNode joins two outgoing edges from the same DecicionNode,
This join transition will never be activated, since only one of the two outgoing
edges will be fired.

We will define a formal model to check the conformance to these rules by
controlling the use of the grammar of UML.

3 The C-System: A Formal Language Control System

In this section, we propose the formal model for controlling the use of grammars
based on classical language theory [17].

Let G = (N, T, P, S) be a grammar, where N is the set of nonterminals, T is
the set of terminals, P is the set of productions of the form l : A → α where l is
the name of the production, A ∈ N , α ∈ (N

⋃
T)∗, and S is the start symbol.

A derivation using a specified production p is denoted by α
p⇒ β, and multiple

derivations are denoted by α ⇒∗ γ.

Definition 1. A controlling grammar Ĝ over a controlled grammar (or
simply grammar) G = (N, T, P, S) is a quadruple Ĝ = (N̂ , T̂ , P̂ , Ŝ), where T̂ =
P . The language L(Ĝ) is called a controlling language. �

The symbol Ĝ is read “control G” or “G hat”. For making reading easier, we
assume that N ∩ N̂ = ∅. T̂ = P means that the terminals of Ĝ are exactly the
productions of G.

If we use an automaton A to process the input string, such that L(A) = L(G),
then we can also use a controlling automaton Â to represent the controlling
language.

As we know, each string w ∈ L(G) has at least one leftmost derivation (de-
noted by “lm”) using a sequence of productions from P , e.g. p1p2...pk. The
controlling grammar restricts the derivation in the sense that the sequences of
applied productions should be in the language it specifies, i.e., p1p2...pk ∈ L(Ĝ).
Formally, we have the following definition.

Definition 2. Given a grammar G = (N, T, P, S), the language of the grammar
with a controlling grammar Ĝ is:

L(G−→· Ĝ) = {w|S p1⇒
lm

w1 · · · pk⇒
lm

wk = w, p1, p2, ..., pk ∈ P and p1p2...pk ∈ L(Ĝ)}

We say that G and Ĝ constitute a C-System C = G−→· Ĝ, short for formal
language control system. The language L(C) = L(G−→· Ĝ) is called a global
system language. �

The symbol −→· is called “meta composition”. Its left operand is controlled by
the right operand, which is a meta level grammar. If we use automata-based

www.manaraa.com

72 Z. Chen and G. Motet

notations, a string w ∈ L(A−→· Â) if and only if A accepts w, and Â accepts the
sequence of the labels of the transitions used.

A regular C-System is a C-System of which the controlled grammar G
is a regular grammar (or A is a finite automaton). Some variants of regu-
lar C-Systems are proposed for ensuring system safety requirements, e.g. In-
put/Output C-Systems [18], Interface C-Systems [19][20]. We denote by CR the
family of regular C-Systems.

A context-free C-System is a C-System of which the controlled grammar
G is a context-free grammar (or A is a pushdown automaton). We denote by
CCF the family of context-free C-Systems.

Generally, we denote by CY
X the family of C-Systems that consist of X-type

controlled grammar and Y -type controlling grammar, where X, Y ∈ {R, CF}.
Although X, Y could be also other types in Chomsky hierarchy, e.g. context-
sensitive, this is beyond the scope of this paper.

Obviously, the set of accepted inputs is a subset of the controlled language,
such that the sequence of the applied productions belongs to the controlling
language. Consider a simple example as follows.

Example 1. Given a regular grammar G and a regular controlling grammar Ĝ:

G

⎧⎪⎨
⎪⎩

p1 : S → aS

p2 : S → bS

p3 : S → ε

Ĝ

{
Ŝ → p1Ŝ|p3Ŝ|p2A

A → p2A|p3A|ε

L(G) accepts the language (a|b)∗, e.g., aab, abab. L(Ĝ) accepts the language
(p1|p3)∗p2(p2|p3)∗. The trivial grammar G is considered to provide a simple
illustration of the introduced principles.

The grammars G and Ĝ constitute a regular C-System C = G−→· Ĝ ∈ CR
R .

Given the string aab ∈ L(G), we conclude that aab ∈ L(G−→· Ĝ), because we
have the leftmost derivations S

p1⇒ aS
p1⇒ aaS

p2⇒ aabS
p3⇒ aab, where p1p1p2p3 ∈

L(Ĝ) as Ŝ ⇒ p1Ŝ ⇒ p1p1Ŝ ⇒ p1p1p2A ⇒ p1p1p2p3A ⇒ p1p1p2p3. On the
contrary, we have abab �∈ L(G−→· Ĝ). Although we have the leftmost derivation
S

p1⇒ aS
p2⇒ abS

p1⇒ abaS
p2⇒ ababS

p3⇒ abab, p1p2p1p2p3 �∈ L(Ĝ).
In fact, the language L(C) = L(G−→· Ĝ) is equivalent to the language a∗b+,

which is the subset of (a|b)∗ satisfying the constraints: “every a should appear
before b” and “at least one b”. �

We remark here that our model is different from regularly controlled grammars
[21][22], in the sense that we restrict derivations to be leftmost and allow context-
free controlling grammars. These differences result in different theoretical results,
which are beyond the scope of this paper.

4 Examples

In this section we use some practical examples to illustrate the idea of the pre-
vious section. We denote the grammar of UML by G = (N, T, P, S), where P is

www.manaraa.com

A Language-Theoretic View on Guidelines and Consistency Rules of UML 73

the set of productions listed in Section 2, and each production p ∈ P is labeled
by a name starting with a digit.

Example 2. Consider two rules on class diagrams:

Rule 1: Each class can have at most one generalization. This rule is a guideline,
as we mentioned in Section 1 and at the end of Section 2. This rule is also
a consistency rule in the context of Java, since Java does not allow multiple
inheritance. However we may derive a class from multiple classes in the context
of C++.

Rule 2: Each class can have at most 30 attributes. This rule may be adopted
by software authorities as a guideline in avionics, in order to increase the safety
of software systems by minimizing the complexity of classes.

Note that these rules cannot be explicitly integrated into the grammar of UML,
but only recommended as guidelines or consistency rules. We cannot put rule 1
into the standard of UML, since UML models can be implemented with both
C++ and Java programming languages. Rule 2 is a restriction for a specific
domain, and we should not require all programmers to use limited attributes by
specifying the UML language.

We aim to specify the rules from the meta-language level, thus control the use
of the language. Consider the example of Fig. 1, to obtain the associated XMI
text, the sequence of applied productions of G in the leftmost derivation is as
follow (“...” stands for some omitted productions, to save space):

2a_2, 2k(Package), 2d_2, 2e, 2f_1, 3h_1, 2h_1, 2i,
..., 2k(packagedElement), ..., 2k(Class),

..., 2k(ownedAttribute), ..., 2k(Property),
..., 2k(packagedElement),
..., 2k(packagedElement), ..., 2k(Class),

..., 2k(ownedAttribute), ..., 2k(Property),
..., 2k(packagedElement),
..., 2k(packagedElement), ..., 2k(Class),

..., 2k(generalization), ..., 2k(Generalization),

..., 2k(generalization), ..., 2k(Generalization),
..., 2k(packagedElement),
..., 2k(Package)

Let c, g stand for 2k(Class), 2k(Generalization), respectively. Note that the
occurrence of two g after the third c violates Rule 1. In fact, all the sequences
of productions in the pattern “...c...g...g...” are not allowed by the rule (there is
no c between the two g), indicating that the class has two generalizations.

Thus, we propose the following controlling grammar Ĝc to restrict the use of
the language to satisfy Rule 1:

www.manaraa.com

74 Z. Chen and G. Motet

Ĝc

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S → c Qc | D S | D

Qc → c Qc | g Qg | D Qc | D

Qg → c Qc | D Qg | D

D → {p | p ∈ P ∧ p �∈ {c, g}}

(1)

where S, Qc, Qg, D are nonterminals, D includes all productions except c, g.
L(Ĝc) accepts the sequences of productions satisfying Rule 1.

Implicitly, the controlling grammar specifies an automaton Âc in Fig. 3,
where � is an implicit error state (the dashed circle). Strings of the pattern
D∗cD∗gD∗gD∗ will lead Âc to the error state.

S Qc Qg

�

D

c

c, D

g

c

D

g g

Fig. 3. The Automaton Âc

If the sequence of productions applied to derive a model is accepted by the
language L(Ĝc), then the model conforms to Rule 1. In Fig. 1, the derivation of
the class FaxMachine uses the pattern D∗cD∗gD∗gD∗ �∈ L(Ĝc), which leads
to � of the automaton, thus it violates Rule 1. On the contrary, the derivations
of Scanner and Printer are accepted by L(Ĝc), thus satisfy Rule 1.

Now consider Rule 2. Let c, pr, pe stand for 2k(Class), 2k(Property),
2k(PackagedElement), respectively. Note that the occurrence of more than 30
pr after a c violates Rule 2. In fact, all the sequences of productions in the pat-
tern “...c...(pr...)n, n > 30” are not allowed by the rule (there is no c between
any two pr), indicating that the class has more than 30 attributes.

To satisfy Rule 2, we propose the following controlling grammar Ĝp to restrict
the use of the language:

Ĝp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S → pe S | c Qc | D S | D

Qc → pe S | c Qc | pr Q1 | D Qc | D

Qi → pe S | c Qc | pr Qi+1 | D Qi | D (1 ≤ i < 30)
Q30 → pe S | c Qc | D Q30 | D

D → {p | p ∈ P ∧ p �∈ {c, pr, pe}}

(2)

where S, Qc, Qi are nonterminals, D includes all productions except c, pr, pe.
L(Ĝp) accepts the sequences of productions satisfying Rule 2.

www.manaraa.com

A Language-Theoretic View on Guidelines and Consistency Rules of UML 75

S Qc Q1 Q29 Q30

�

pe, D

c
pe

c, D

pr
c

pe

D

pr pr

D

pe

c
pr

D

pe

c

pr pr

Fig. 4. The Automaton Âp

Implicitly, the controlling grammar specifies an automaton Âp in Fig. 4.
Strings of the pattern “D∗cD∗(pr D∗)n, n > 30” will lead Âp to the error state.

If the sequence of productions applied to derive a model is accepted by the
language L(Ĝp), then the model conforms to Rule 2. In Fig. 1, the derivations
of the classes Scanner and Printer use the pattern D∗cD∗prD∗ ∈ L(Ĝp), thus
satisfy Rule 2.

Thanks to the controlling grammars, when a model violates required rules,
the controlling language will reject the model (an implicit error state � will be
activated). Some error handling method may be called to process the error, e.g.,
printing an error message indicating the position and the cause.

We can also use controlling grammar to handle a consistency rule concerning
activity diagrams.

Example 3. In an activity diagram, the number of outgoing edges of ForkNode
should be the same as the number of incoming edges of its pairwise JoinNode.

Let n, f, j, i, o stand for 2k(node), 2k(ForkNode), 2k(JoinNode), 2k(incoming),
2k(outgoing), respectively. We propose the following controlling grammar Ĝa to
restrict the use of the language to satisfy the rule:

Ĝa

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S → N F I∗ Q O∗ N | N I∗ O∗ N | D∗

Q → O Q I | N S N J

N → n D∗

F → f D∗

J → j D∗

I → i D∗

O → o D∗

D → {p | p ∈ P ∧ p �∈ {n, f, j, i, o}}

(3)

L(Ĝa) accepts all the sequences of productions of the pattern
NFI∗OnNSNJInO∗N , which leads to models respecting the rule. This context-
free grammar implicitly specifies a PDA (Pushdown Automaton [17]), which is
more complex than the automata in Figures 3 and 4.

Globally, any UML user model M derived from the C-System C = G−→· Ĝa ∈
CCF

CF , i.e. M ∈ L(C), conforms to the rule in Example 3.

www.manaraa.com

76 Z. Chen and G. Motet

As a more concrete instance, we consider the model in Fig. 2. The XMI-
compliant document of the model in Fig. 2 is the follows:

<packagedElement xmi:type="uml:Activity"
xmi:id="U937506ed-af64-44c6-9b4c-e735bb6d8cc6"
name="Activity1" visibility="public">

<node xmi:type="uml:InitialNode" xmi:id="U16aa15e8-0e5d-
4fd1-930a-725073ece9f0">

<outgoing xmi:idref="Ue9366b93-a45b-43f1-a201-2038b0bd0b30"/>
</node>
<node xmi:type="uml:ForkNode" xmi:id="U26768518-a40c-

4713-b35e-c267cc660508" name="ForkNode">
<incoming xmi:idref="Ue9366b93-a45b-43f1-a201-2038b0bd0b30"/>
<outgoing xmi:idref="Ua800ba9b-e167-4a7c-a9a9-80e6a77edeb7"/>

</node>
<node xmi:type="uml:DecisionNode" xmi:id="Uc9e4f0de-8da6-

4c98-9b95-b4cde30ccfc0" name="DecisionNode">
<incoming xmi:idref="Ua800ba9b-e167-4a7c-a9a9-80e6a77edeb7"/>
<outgoing xmi:idref="Ua4a2b313-13d6-4d69-9617-4803560731ef"/>
<outgoing xmi:idref="U6eede33f-98ac-4654-bb17-dbe6aa7e46be"/>

</node>
<node xmi:type="uml:JoinNode" xmi:id="Ud304ce3c-ebe4-

4b06-b75a-fa2321f8a151" name="JoinNode">
<incoming xmi:idref="Ua4a2b313-13d6-4d69-9617-4803560731ef"/>
<incoming xmi:idref="U6eede33f-98ac-4654-bb17-dbe6aa7e46be"/>

</node>
<edge xmi:type="uml:ControlFlow"

xmi:id="Ua4a2b313-13d6-4d69-9617-4803560731ef"
source="Uc9e4f0de-8da6-4c98-9b95-b4cde30ccfc0"
target="Ud304ce3c-ebe4-4b06-b75a-fa2321f8a151">

<guard xmi:type="uml:LiteralString"
xmi:id="U6872f3b3-680c-430e-bdb3-21c0a317d290"
visibility="public" value="x>10"/>

</edge>
<edge xmi:type="uml:ControlFlow"

xmi:id="U6eede33f-98ac-4654-bb17-dbe6aa7e46be"
source="Uc9e4f0de-8da6-4c98-9b95-b4cde30ccfc0"
target="Ud304ce3c-ebe4-4b06-b75a-fa2321f8a151">

<guard xmi:type="uml:LiteralString"
xmi:id="Ub853080d-481c-46ff-9f7c-92a31ac24349"
visibility="public" value="else"/>

</edge>
<edge xmi:type="uml:ControlFlow"

xmi:id="Ua800ba9b-e167-4a7c-a9a9-80e6a77edeb7"
source="U26768518-a40c-4713-b35e-c267cc660508"
target="Uc9e4f0de-8da6-4c98-9b95-b4cde30ccfc0"/>

www.manaraa.com

A Language-Theoretic View on Guidelines and Consistency Rules of UML 77

<edge
xmi:type="uml:ControlFlow"
xmi:id="Ue9366b93-a45b-43f1-a201-2038b0bd0b30"
source="U16aa15e8-0e5d-4fd1-930a-725073ece9f0"
target="U26768518-a40c-4713-b35e-c267cc660508"/>

</packagedElement>

It is easy to detect that the sequence of applied productions
“...nD∗fD∗iD∗oD∗nD∗ ... nD∗jD∗iD∗i...” is not accepted by L(Ĝa) (one o
follows f , while two i follow j), thus there is an inconsistency.

We remark here that there are two preconditions of using the controlling
grammar concerning the sequences of the model elements in the XML document:
1. ForkNode must appear before its pairwise JoinNode; 2. incoming edges
must appear before outcoming edges in a node. The two conditions are trivial,
since it is easy to control their positions in the exporting XMI documents in
implementing such a transformation.

5 Related Work

The most popular technique for verifying software correctness is model checking
[23]. In this framework, we have three steps in verifying a system. First, we
formalize system behavior as a model (e.g., a transition system, a Kripke model
[24]). Second, we specify the properties that we aim at validating using temporal
logics. Third, we use a certain checking algorithm to search for a counterexample
which is an execution trace violating the specified properties. If the algorithm
finds such a counterexample, we have to correct the original design.

Most checking tools use specific semantics of UML diagrams. They have the
flavor of model checking, e.g., Egyed’s UML/Analyzer [25][26] and OCL (Object
Constraint Language) [27]. At first, developers design UML diagrams as a model.
Then, we specify the consistency rules as OCL or similar expressions. Certain
algorithms are executed to detect counterexamples that violate the rules [28].
Note that these techniques do not discriminate the rules on the model level and
those concerning the language level features.

Unlike these techniques, our framework takes another way of ensuring cor-
rectness. It consists of the following steps:

1. Specifying the grammar G of a language. It specifies an operational seman-
tics, which defines what a language is able to model. Developing the grammar
is mainly performed by language designers.

2. Modeling correctness rules of the use of languages as a controlling grammar
Ĝ. It specifies a correctness semantics, which defines what a language is
authorized to derive. This process is the duty of safety engineers whose
responsibility is to assure the correct use of the language.

www.manaraa.com

78 Z. Chen and G. Motet

3. The two grammars constitute a consistent language as a whole, that is, any
derivations of the global system language is a correct and consistent use of
the language.

In particular, our work differs from model checking in the following aspects:

1. Our work has different objectives, and uses different approaches to those of
model checking. As we show in Fig. 5, model checking techniques use a bottom-
up approach — they verify execution traces T ∗ at the lower level L1 to prove
the correct use of the grammar G at the middle level L2. Whereas our proposal
uses a top-down approach — we model correctness rules as acceptable se-
quences of productions (P ∗) at the higher level L3 to ensure the correct use of
G. Then any derivatives (at L1) that conform to the C-System C = G−→· Ĝ are
definitely a correct use. So the two techniques are complementary.

w ∈ T ∗

T

G
output

P

Ĝ
C

(models, codes)
Level L1

(modeling language)
Level L2

(rules of use)
Level L3

Fig. 5. Three Levels of the Framework

2. Our work and model checking express language-level and model-level con-
straints, respectively. Language-level constraints are more effective, because they
implicitly have reusability. That is, we only need to develop one language-level
constraint and apply it to all the models in the language. However, using model
checking, we need to replicate model-level constraints for each model. Addition-
ally, model checking can process model-specific constraints.

3. Our work and model checking use syntax-based and semantics-based ap-
proaches (or static and dynamic analysis), respectively. As a result, our approach
is generic and metamodel-independent, and concerns little about semantics. So
it can be applied to all MOF-compliant languages, not only to UML. However,
model checking techniques depends on the semantics of a language, thus specific
algorithms should be developed for different models.

4. Our work and model checking catch errors at compile-time and runtime,
respectively. As a result, our approach implements membership checking of
context-free languages, which is decidable. That is, it searches in a limited space,
which is defined by grammars. Model checking may search in a larger, even in-
finite space, so we have to limit the space of computing, and introduce the risk
of missing solutions.

www.manaraa.com

A Language-Theoretic View on Guidelines and Consistency Rules of UML 79

6 Discussion

In this section, we would like to shortly discuss some issues which are beyond
the scope of this paper.

The first issue concerns the implementation of controlling grammars. The
controlled and controlling grammars can be implemented using two parsers sep-
arately. The technique for constructing a parser from a context-free grammar is
rather mature [29][30]. Some tools provide automated generation of parsers from
a grammar specification, such as Yacc, Bison.

Notice that the inputs of controlling parsers are the sequences of productions
applied in the parsing of L(G). So there are communications between the two
parsers. Once module G uses a production pi, then the name of the production
is sent to Ĝ as an input. If L(Ĝ) accepts the sequence of productions and L(G)
accepts the model, then L(G−→· Ĝ) accepts the model.

The second issue deals with multiple rules. If we have multiple guidelines or
consistency rules, each rule is formalized using a grammar. We can develop an
automated tool that converts the grammars into automata, and then combine
these automata to compute an intersection, i.e., an automaton A′ [17]. The inter-
section A′ can be used as a controlling automaton, which specifies a controlling
language L(A′) that includes all the semantics of the rules.

The third issue is about the tradeoff between cost and benefits of applying the
proposed approach. It seems that writing a controlling grammar is expensive,
because it involves formal methods. However, it is probably not the case. As
we mentioned, a controlling grammar specify language-level constraints, and
can be reused by all the models derived from the controlled grammar. Thus
the controlling grammar can be identified and formalized by the organizations
who define the language or its authorized usage, e.g., OMG and FAA (Federal
Aviation Administration), respectively. Developers and software companies can
use the published standard controlling grammar for checking inconsistencies in
their models. By contraries, if every user writes their own checking algorithms
and codes, e.g., in OCL or other programming languages, the codes will be hard
to be reused by other users who have different models to check. Thus the total
cost of all the users may be higher. Of course, more empirical results on the
tradeoff is a good direction for future work.

7 Conclusion

We provided a language-theoretic view on guidelines and consistency rules of
UML. We proposed the formalism of C-Systems, short for “formal language
control systems”. To the best of our knowledge, none related work proposed
similar methodologies. Rules are considered as controlling grammars which con-
trol the use of modeling languages. This methodology is generic, syntax-based
and metamodel-independent. It provides a top-down approach that checks and
reports violations of language level constraints at compile-time. It can be also
applied to all MOF-compliant languages, not only to UML, since it does not
depend on the specific semantics of languages.

www.manaraa.com

80 Z. Chen and G. Motet

Since we focused on the methodological foundation, one of the future work is
to develop an automated checking tool implementing the presented principles.
We will also examine instant checking techniques of our method. One feature of
UML/Analyzer is instant checking, which only verifies the small portion where
the model changes, in order to save the cost of checking [31]. Intuitively, our
approach is also easy to be extended to instant checking. We only need to gen-
erate the XMI document of the changed part of diagrams (e.g. a class in a class
diagram), and verify it. However, this calls for more works in detail.

References

1. OMG: Unified Modeling Language: Infrastructure, version 2.1.1 (07-02-06). Object
Management Group (2007)

2. OMG: Unified Modeling Language: Superstructure, version 2.1.1 (07-02-05). Ob-
ject Management Group (2007)

3. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., Robbins, J.E.: Modeling soft-
ware architectures in the unified modeling language. ACM Trans. Softw. Eng.
Methodol. 11(1), 2–57 (2002)

4. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide, 2nd edn. Addison-Wesley, Reading (2005)

5. Balzer, R.: Tolerating inconsistency. In: Proceedings of the 13th International Con-
ference on Software Engineering (ICSE 1991), pp. 158–165. IEEE Computer Soci-
ety, Los Alamitos (1991)

6. Easterbrook, S.M., Chechik, M.: 2nd international workshop on living with incon-
sistency. In: Proceedings of the 23rd International Conference on Software Engi-
neering (ICSE 2001), pp. 749–750. IEEE Computer Society, Los Alamitos (2001)

7. Nuseibeh, B., Easterbrook, S.M., Russo, A.: Leveraging inconsistency in software
development. IEEE Computer 33(4), 24–29 (2000)

8. Kuzniarz, L., Reggio, G., Sourrouille, J.L., Huzar, Z. (eds.): Workshop on consis-
tency problems in UML-based software development I, co-located with UML 2002
(2002), http://www.ipd.bth.se/consistencyUML/

9. Kuzniarz, L., Huzar, Z., Reggio, G., Sourrouille, J.L. (eds.): Workshop on consis-
tency problems in UML-based software development II, co-located with UML 2003
(2003), http://www.ipd.bth.se/consistencyUML/

10. Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.L. (eds.): Workshop on con-
sistency problems in UML-based software development III, co-located with UML
2004 (2004), http://www.ipd.bth.se/consistencyUML/

11. Vidal, J.-P.S., Malgouyres, H., Motet, G.: UML 2.0 Consistency Rules (2005),
http://www.lattis.univ-toulouse.fr/UML/

12. Vidal, J.P.S., Malgouyres, H., Motet, G.: UML 2.0 consistency rules identification.
In: Proceedings of the 2005 International Conference on Software Engineering Re-
search and Practice (SERP 2005). CSREA Press (2005)

13. Federal Aviation Administration: Handbook for Object-Oriented Technology in
Aviation (OOTiA), vol. 2.1, Considerations and issues. U.S. Department of Trans-
portation (October 2004)

14. Motet, G.: Risks of faults intrinsic to software languages: Trade-off between design
performance and application safety. Safety Science (2009)

15. OMG: MOF 2.0 / XMI Mapping, version 2.1.1 (07-12-01). Object Management
Group (2007)

http://www.ipd.bth.se/consistencyUML/
http://www.ipd.bth.se/consistencyUML/
http://www.ipd.bth.se/consistencyUML/
http://www.lattis.univ-toulouse.fr/UML/

www.manaraa.com

A Language-Theoretic View on Guidelines and Consistency Rules of UML 81

16. ISO/IEC: ISO/IEC 14977:1996(E): Extended BNF (1996)
17. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading (1979)
18. Chen, Z., Motet, G.: Modeling system safety requirements using input/output con-

straint meta-automata. In: Proceedings of the 4th International Conference on Sys-
tems (ICONS 2009), pp. 228–233. IEEE Computer Society, Los Alamitos (2009)

19. Chen, Z., Motet, G.: System safety requirements as control structures. In: Proceed-
ings of the 33rd Annual IEEE International Computer Software and Applications
Conference (COMPSAC 2009). IEEE Computer Society, Los Alamitos (2009)

20. Chen, Z., Motet, G.: Formalizing safety requirements using controlling automata.
In: Proceedings of the Second International Conference on Dependability (DE-
PEND 2009). IEEE Computer Society, Los Alamitos (2009)

21. Ginsburg, S., Spanier, E.H.: Control sets on grammars. Mathematical Systems
Theory 2(2), 159–177 (1968)

22. Dassow, J., Paun, G., Salomaa, A.: Grammars with controlled derivations. In:
Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 101–154.
Springer, Heidelberg (1997)

23. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

24. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems, 2nd edn. Cambridge University Press, Cambridge (2004)

25. Egyed, A.: Fixing inconsistencies in UML design models. In: Proceedings of the
29th International Conference on Software Engineering (ICSE 2007), pp. 292–301.
IEEE Computer Society, Los Alamitos (2007)

26. Egyed, A.: UML/Analyzer: A tool for the instant consistency checking of UML
models. In: Proceedings of the 29th International Conference on Software Engi-
neering (ICSE 2007), pp. 793–796. IEEE Computer Society, Los Alamitos (2007)

27. OMG: Object Constraint Language, version 2.0 (06-05-01). Object Management
Group (2006)

28. Chiorean, D., Pasca, M., Cârcu, A., Botiza, C., Moldovan, S.: Ensuring UML mod-
els consistency using the OCL environment. Electr. Notes Theor. Comput. Sci. 102,
99–110 (2004)

29. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2),
94–102 (1970)

30. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading (1986)

31. Egyed, A.: Instant consistency checking for the UML. In: Osterweil, L.J., Rom-
bach, H.D., Soffa, M.L. (eds.) Proceedings of the 28th International Conference on
Software Engineering (ICSE 2006), pp. 381–390. ACM, New York (2006)

www.manaraa.com

A Domain Specific Language for Extracting
Models in Software Modernization

Javier Luis Cánovas Izquierdo and Jesús Garćıa Molina

University of Murcia
{jlcanovas,jmolina}@um.es

Abstract. Model-Driven Engineering techniques can be used both to
create new software and to modernize existing software systems. Model-
Driven Software Modernization requires a first step for the extraction
of models. Most modernization scenarios involve dealing with the GPL
source code of the existing system. Techniques and tools providing effi-
cient means to extract models from source code are therefore needed.

In this paper, we analyze the difficulties encountered when using
the existing approaches and we propose a language, called Gra2MoL,
which is especially tailored to address the problem of model extraction.
This provides a powerful query language for concrete syntax trees, and
mappings between source grammar elements and target metamodel ele-
ments are expressed by rules similar to those found in model transfor-
mation languages. Moreover, the approach also allows reusing existing
grammars.

1 Introduction

Model-Driven Engineering (MDE) techniques are not only used to create new
systems, but also to evolve or modernize legacy software. The field of model-
based software modernization is currently emerging and a great research and
development effort will thus be necessary in the years to come. The OMG has
recently proposed several modernization standards in its ADM initiative [1],
such as KDM [2]; certain tools, such as MoDisco [3], are currently under devel-
opment, and some research challenges have even been identified for the evolution
of systems built by using MDE techniques [4].

Most modernization scenarios [5], such as platform migration or application
improvement, involve dealing with source code written in a General Purpose Lan-
guage (GPL). Techniques and tools providing efficient means to extract models
from source code are therefore essential. In this extraction process, models con-
forming to a target metamodel are generated from source code conforming to the
grammar of a GPL. Thus, a bridge between the technical spaces grammarware
[6] and MDE must be built. This bridge is normally implemented by dedicated
parsers (i.e. tools performing both parsing and model generation tasks), since
the use of approaches such as bridging grammarware and MDE or transform-
ing programs have certain drawbacks which limit their usefulness, as will be
explained later in this paper. Bridging approaches [7,8] aim to create textual

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 82–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

A Domain Specific Language for Extracting Models 83

domain specific languages (DSL) which have a simpler structure than GPLs; in
the case of program transformations [9,10], the resulting program must still be
converted into a model. Since the construction of dedicated parsers is a time-
consuming task, we have defined a DSL, denominated as Gra2MoL, which has
been specifically designed for extracting models from GPL source code.

Gra2MoL allows mappings to be established between grammar elements and
target metamodel elements in a similar way to which model-to-model transfor-
mations are expressed in languages as ATL [11] and RubyTL [12]. It provides a
powerful query language to ease the navigation and query of syntax trees. We
have used Gra2MoL to extract models from Java and PL/SQL code, and this
experience has shown a reduction in development time, while maintenance is also
improved and existing grammars are reused. In this paper we present Gra2MoL,
and compare it with the existing approaches.

This paper is organized as follows. Section 2 analyzes the difficulties en-
countered when using existing solutions for model extraction and introduces
Gra2MoL. In Section 3, we describe the language for querying concrete syntax
trees provided by Gra2MoL. Section 4 presents the main features of Gra2MoL
and explains how it has been implemented, while Section 5 shows an example of
the language. Finally, Section 6 presents our conclusions and some future work.

2 Model Extraction from Source Code

In this section we contrast different approaches which could be used to extract
models from GPL code, indicating their main limitations. This discussion will
motivate the approach proposed in this paper. We will begin by giving a defini-
tion of model extraction in the context of model-driven modernization, identify-
ing the main issues to be addressed.

Figure 1 shows the elements involved in the process of extracting models from
GPL source code. This process is a grammar-to-model transformation T which
has as its input a program P along with the grammar definition G to which
it conforms. It generates a target model MT conforming to a target metamodel
MMT which defines the information to be extracted. The extraction process also
requires specifying mappings between the grammar elements and the metamodel
elements. As we will see, the form of these mappings is different depending
on each considered approach. The input program is represented by either an
Abstract Syntax Tree (AST) or a Concrete Syntax Tree (CST). Along this paper,
we will use the term “syntax tree” to refer both AST and CST.

Therefore extracting models from source code is a scenario which requires a
bridge between grammarware and MDE techniques (modelware), the same as the
definition of a textual concrete syntax for an abstract syntax metamodel [7,13].
With GPL code, creating this bridge requires an efficient mechanism for travers-
ing syntax trees since the model elements to be extracted are usually composed
of information that is scattered in such trees. In particular, this scattering is
mainly caused by the means used to represent the references between elements.
Models are graphs and any model element can directly refer to another, whereas

www.manaraa.com

84 J.L.C. Izquierdo and J.G. Molina

Fig. 1. Process of extracting models from source code

in a syntax tree that represents certain code which conforms to a GPL grammar,
the references between grammar elements are implicitly established by means of
identifiers. Transforming an identifier-based reference into an explicit reference
involves looking for the “identified” node on the syntax tree. For instance, if a
model element is extracted from a “function call” statement where one argu-
ment is a global variable, certain necessary information, such as the type of the
variable or the function signature, is located outside the current scope ([14] calls
this kind of transformations global-to-local transformations).

2.1 Approaches for Model Extraction

The chosen strategy is normally that of creating dedicated parsers. Given a
grammar and a target metamodel, a dedicated parser provides a specific solution
which performs both parsing and model generation tasks. The former is in charge
of extracting a syntax tree from the source code and the latter traverses such syn-
tax trees in order to generate the target model. For example, in [15] a dedicated
parser is built to extract models from PL/SQL code, and another with which
to extract models from VB code is presented in [16]. However, dedicated parser
development is a time-consuming and very expensive task. The effort required
is usually alleviated by automatically extracting an AST from the source code.
This step is performed by using an API, which is intended to make the manage-
ment of such tree easier. An example of such APIs is the JDT Eclipse project
[17], which works with Java source code. But APIs do not currently exist for a
number of the GPLs widely used in modernization (e.g. PL/SQL language). In
addition, although these APIs tackle AST extraction and management, a mech-
anism for retrieving scattered information must still be hard-coded, so APIs do
not considerably shorten the development time.

MoDisco (Model Discovery) [3] is a model extraction framework, which is
part of the Eclipse GMT project [18]. This framework is currently under devel-
opment and provides a model managing infrastructure through which to imple-
ment dedicated parsers (“discoverers” in MoDisco terminology). A KDM based
metamodel, a metamodel extension mechanism and a methodology for designing
such extensions are also planned.

www.manaraa.com

A Domain Specific Language for Extracting Models 85

Several approaches for bridging grammarware and modelware have been de-
fined in the context of creating textual domain specific languages (DSL) for
MDE. These approaches can be classified in two groups according to whether
they are focused on grammars or metamodels. Grammar-based approaches are
oriented towards automatically generating metamodels from grammars, whereas
metamodel-based approaches work in the opposite direction. In model-driven
modernization, the process starts from existing source code which conforms to
the grammar of a GPL. Therefore metamodel-based approaches, such as TCS,
are not well suited. As is stated in [13]: “If the problem at hand is to develop
a single, eventually general purpose language then the efforts for developing a
dedicated parser are worthwhile” (rather than using TCS).

Grammar-based approach limitations. XText [7] is an example of a
grammar-based approach, which is part of the openArchitectureWare toolkit
[19]. An EBNF-based language is provided to specify the input grammar to the
xText processor, that is, a specification of the textual concrete syntax including
grammar rules intended to guide the generation of the corresponding metamodel.
Three artifacts are thus generated: i) a metamodel of the language, ii) a parser to
recognize the language syntax and to create models conforming to the generated
metamodel, and iii) a language specific editor.

However, several problems arise when xText is used in modernization, since
dealing with GPL source code involves problems not addressed by this approach,
which is aimed at simpler languages than a GPL. The automatically generated
metamodel from the grammar of a GPL is of poor quality because it includes su-
perfluous elements and grammatical aspects, and the semantic gap between this
metamodel and the target metamodel is thus very high. A model-to-model trans-
formation is therefore required to convert models generated by xText into models
conforming to the desired target metamodel. However, since current model-to-
model transformation languages do not offer an efficient mechanism to resolve
the problem of gathering scattered information, the definition of such transfor-
mation is a complex task.

With regard to grammar reuse, neither existing grammar reuse, the reuse of
grammars for well-known parser generators (e.g. ANTLR), nor the reuse of xText
grammar specifications is promoted. On the one hand, translating a grammar
specification provided by a parser generator into a xText EBNF-based specifi-
cation is extremely complicated since some parser options which are needed to
recognize GPLs cannot be specified (e.g. in Java, the use of backtracking or the
inclusion of syntactic predicates). On the other hand, xText grammar specifica-
tions are oriented to a specific metamodel so they include specific rules for such
a metamodel.

Wimmer et al. [8] and Kunert [20] have proposed improving the quality of the
generated metamodel by applying heuristics and including manual annotations
to the grammar. However, the quality of the metamodel generated from a GPL
grammar is still low and it is necessary to additionally define a model-to-model
transformation. Moreover, tools supporting these two approaches are not yet
available.

www.manaraa.com

86 J.L.C. Izquierdo and J.G. Molina

Program transformation approach limitations. Program transformation
languages, such as Stratego/XT [9] and TXL [10], could be used to extract mod-
els from source code by expressing the abstract syntax as a context-free grammar
rather than a metamodel. However, when such languages are used, the following
limitations are encountered. Firstly, the result of a program transformation exe-
cution is a program conforming to a grammar, and therefore a tool for bridging
grammarware and modelware would be still needed to obtain the model conform-
ing to the target metamodel. Secondly, grammar reuse is not promoted because
each toolkit uses its own grammar definition language. Moreover, each toolkit
only provides a limited number of GPL grammars (i.e. Java and C in Stratego
and TXL).

2.2 Our Approach for Model Extraction

In the context of an Oracle Forms migration project, we faced model extraction
from PL/SQL code. Then we considered the definition of a DSL in order to over-
come the limitations of the previously discussed approaches. This DSL should
decrease the development time, make the maintenance easier and promote the
reuse of existing grammars (e.g. ANTLR and JavaCC grammars). To achieve
these objectives, it is necessary to raise two key design issues: how can mappings
between grammar elements and metamodel elements be expressed in a simple
and readable way, and what notation is appropriate when retrieving scattered
information from syntax trees.

Model-to-model transformation languages could be used to express the map-
pings between grammar elements and metamodel elements, but this possibility
would require models rather than GPL code as input, and a dedicated parser
would therefore have to be implemented to extract a model conforming to an
intermediate metamodel (i.e. an abstract syntax tree metamodel) from source
code. A model-to-model transformation would then be applicable. However,
defining these transformations would lead to an important problem: the inade-
quacy of the query language.

Many current model transformation languages, such as ATL [11] or QVT
[21], provide a variant of the OCL navigation language [22] which allows model
graphs to be traversed. Although OCL-like expressions are appropriate for most
practical model-to-model transformation definitions, they are not convenient for
typical global-to-local transformations involved in a model extraction from GPL
code: long navigation chains must be written using dot notation. Integrating
a more suitable query language in an existing model transformation language
would involve important changes if a language supporting two different query
mechanisms were to be obtained. For instance, a plugin mechanism could be
implemented.

We have therefore created a DSL which has been specially designed to express
grammar-to-model mappings, and which provides a powerful query language for
syntax trees. In particular, since the scattered information problem appears in
both AST and CST, and obtaining a CST is easier than an AST, we use CSTs for
representing the source code. This DSL, denominated as Gra2MoL (Grammar

www.manaraa.com

A Domain Specific Language for Extracting Models 87

Table 1. Comparison of Gra2MoL with the analyzed approaches. NA = Not applicable,
G = Grammar, MMT = Target metamodel, MMI = Intermediate metamodel, T
= Transformation definition, P = Dedicated parser, TPT = Program transformation
definition, Gxt = xText grammar, m2m = model-to-model transformation definition,
GAS = Abstract syntax grammar.

Approach Syntax tree
navigation

Artifacts
to be

created

Post
processing

Existing
grammar

reuse

Built
grammar

reuse

Purpose

Dedicated
parser

(+ API)

GPL code
(+ primitives)

MMT

P
None Yes NA Specific

model
extraction

Grammar
based

bridging
(xText)

Poor support Gxt

MMT

m2m

M2M transformation:
generated MMI →
MMT

No No DSL
creation

Program
transf.

Stratego incor-
porates a query
language [23]

MMT

TP T

GAS

m2m

Extracting a model
from a program con-
forming to GAS

Limited
(a few
gram-
mars)

Yes Program
transf.

Gra2MoL
Structure-shy query
language

MMT

T
None Yes NA General

purpose
model
extraction

To Model Transformation Language) will be described in Section 4 and the query
language is introduced in the following section.

Table 1 contrasts Gra2MoL with the analyzed approaches. The columns show
the properties which are compared: the ability to navigate the syntax tree; which
artifacts must be created; whether post-processing is necessary; whether it is
possible to reuse existing and provided grammars; and the main purpose of the
approach. The artifacts to be created and the post-processing tasks determine
the effort level of each approach. For instance, we note that bridging and program
transformation approaches require more complex tasks than Gra2MoL, such as
writing model-to-model transformations or defining a GPL grammar, whereas
in Gra2MoL it is only necessary to create the transformation definition and the
target metamodel. With regard to the creation of a dedicated parser, Gra2MoL
turns a hard-coding task into the writing of a grammar-to-model transforma-
tion definition using a language specially tailored for extracting models. As a
consequence, development time is reduced by using Gra2MoL.

3 A Query Language for Concrete Syntax Trees

As stated above, grammar-to-model transformations involve an intensive use of
queries to collect scattered information. Therefore, a model extraction approach
must provide a powerful query language, which facilitates the access to tree
nodes outside the current construct scope (i.e. a rule). Figure 2 illustrates the
scattering problem for a simple example of extracting a model element from a
PL/SQL procedure. The CST shown corresponds with a procedure declaration
which includes a variable declaration and an assignment statement initializing

www.manaraa.com

88 J.L.C. Izquierdo and J.G. Molina

Fig. 2. Example of scattered information. The oval indicates the current scope and the
dotted line indicates an identifier-based reference between tree elements.

the declared variable. The AssignmentStatement model element represents a
PL/SQL assignment which has two attributes to register the right-hand side
and left-hand side expressions of the assignment. As can be observed, whereas
all the information needed to initialize the right-hand side attribute (insert
literal) is inside the current scope (depicted as an oval), the information needed
to initialize the left-hand side attribute is outside such a scope, because the stat
variable declaration is referenced by an identifier. Therefore, a query is necessary
to resolve this reference to the stat variable, by accessing the corresponding
declaration node and retrieving the variables properties.

We have developed a structure-shy query language, inspired by XPath [24],
which allows a CST of the source code to be navigated without the need to
specify each navigation step. The term “structure-shy” is often used to refer
to behavior specifications which are loosely bounded to the data structures on
which operations (i.e. queries) are applied. The term “structure-shy” query is
used in this sense.

In order to navigate the CST, the nodes are “typed” using the grammar
definition, and each tree node registers the name of the grammar element as its
type. Figure 3 illustrates the conformance relationships between the CST and
the grammar definition, showing a CST for several PL/SQL procedures along
with the corresponding fragment of PL/SQL grammar. The conformance rules
are those commonly used to create a tree of this kind:

– A non-terminal element corresponds to a tree node. For instance, the proc de
cl non-terminal element corresponds to the proc decl tree node in Figure 3.

– A terminal element corresponds to a leaf. In Figure 3, the Name terminal
corresponds to the Name leaf.

– A production rule is represented by a node hierarchy whose parent corre-
sponds to the non-terminal element on the left-hand side of the rule, and
a child for each grammar element on the right-hand side by applying the

www.manaraa.com

A Domain Specific Language for Extracting Models 89

Fig. 3. CST for the PL/SQL grammar

previous rules. In Figure 3, the proc decl production rule is represented by
the hierarchy whose root is a proc decl tree node.

A query consists of a sequence of query operations in which each operation
includes an operator, a node type and optional filter and access expressions. The
EBNF expression for a query operation is:

{(’/’|’//’|’///’) (’#’)? nodeType [filterExpression] [accessExpression]}

We have defined three operators for querying and navigating over CSTs: /,
// and ///. The / operator returns the immediate children of a node and is
similar to dot-notation (e.g. in OCL). The // and /// operators permit the
traversal of all the nodes children (direct and indirect), thus retrieving all nodes
of a given type. The /// operator differs slightly from the // operator. Whereas
the /// operator searches the syntax tree in a recursive manner, the // oper-
ator only matches the nodes whose depth is less than or equal to the depth of
the first matched node. The /// operator is, therefore, only used to extract in-
formation from recursive grammar structures. These two operators allow us to
ignore intermediate superfluous nodes, thus making the query definition easier,
since it specifies what kind of node must be matched, but not how to reach it,
in a structure-shy manner. The createFunctionCallStatement rule defined in
Section 5 will show the difference between both operators.

Since a query could return one or more subtrees, the # operator is used to
indicate the root node from which the information needed can be accessed. This
operator must be associated to one and only one query operation of the sequence

www.manaraa.com

90 J.L.C. Izquierdo and J.G. Molina

Fig. 4. OCL query for extracting all the variable declarations of every prodecure of
the PL/SQL CST shown in Figure 3

of operations forming a query. For instance, in order to extract all the PL/SQL
variable declarations defined in every procedure of the PL/SQL CST shown in
Figure 3, the following query could be expressed /create package//#var decl.
The same query expressed in OCL is shown in Figure 4. It is worth mentioning
how the clarity, legibility and conciseness are improved.

Query operations can also include a filter expression, which is enclosed in curly
brackets. A filter expression is a logical expression which is applied to the leaves
of the node specified in a query operation. Each operand of a filter expression
is a boolean function which checks the properties of a leaf, such as its value
or whether it exists. Only those nodes that satisfy the filter expression will be
selected. For example, the query /create package//#proc decl{Name.exists
&& Name.eq(’insert’)} will select every procedure grammar element with a
Name leaf and the value of such leaf must be insert in the PL/SQL CST shown
in Figure 3.

Finally, query operators can also include an access expression enclosed in
square brackets, which is used to access to sibling nodes through indexing.
For instance, the query /create package//#proc decl[0] will select the first
procedure grammar element of the CST in Figure 3, which is the insert pro-
cedure.

The following section outlines the Gra2MoL domain specific language which
integrates the described query language.

4 Gra2MoL

In Gra2MoL, a model extraction process is considered as a grammar-to-model
transformation, so mappings between grammar elements and metamodel ele-
ments are explicitly specified. According to Figure 1, the input of a Gra2MoL
transformation is source code along with the grammar definition it conforms to,
a target metamodel and a transformation definition; the output is a model which
conforms to the target metamodel.

The language has been designed as a rule-based model transformation lan-
guage with rules whose structure is similar to those provided in languages such
as ATL or RubyTL, with two important differences: i) the source element of a

www.manaraa.com

A Domain Specific Language for Extracting Models 91

rule is a grammar element rather than a metamodel element, and ii) the naviga-
tion is expressed by the query language described in Section 3, rather than an
OCL-based language.

A Gra2MoL transformation definition consists of a set of transformation rules.
Each rule specifies the mappings between a grammar element and a target meta-
model element and is composed of four parts:

– The from part specifies a grammar non-terminal symbol, and declares a
variable that will be bound to a tree node when the rule is applied. This
variable can be used by any expression within the rule. The from part can
also include query operations to check the structure to be satisfied by the
nodes whose type is the non-terminal symbol.

– The to part specifies the target element metaclass.
– The queries part contains a set of query expressions which allow information

to be retrieved from the CST. The result of these queries will be used in the
assignments of the mappings part.

– Finally, the mappings part contains a set of bindings to assign a value to the
properties of the target element.

An example of Gra2MoL is shown and commented upon in Section 5.

4.1 Bindings and Rule Evaluation

A binding construct is used in the mappings part to establish the relationship
between a source grammar element and a target metamodel element. This con-
struct has very similar syntax and semantics to the binding construct of the
RubyTL [12] and ATL [11] languages. A binding is written as an assignment
using the operator “=”. The left-hand side must be a property of the target
element metaclass. The right-hand side can be the variable specified in the from
part of the rule, a literal value or a query identifier.

The execution of a transformation definition is driven by the bindings. The def-
initions of rule conformance and well-formed transformation stated for RubyTL
in [12] are applicable to Gra2MoL, with simple changes. A metaclass Am conforms
to a metaclass Bm if they are the same or Am is subtype of Bm, whereas a node
type An conforms to a node type Bn if they are the same. Every Gra2MoL trans-
formation definition must have an entry point in order to start the transformation
execution. The entry point is the first rule of the transformation definition and
its mappings are in charge of starting the transformation execution. When a rule
is applied on a node, the filter located in the from part is first checked and then, if
the node satisfies the filter, an instance of the target metaclass is created, and the
rules bindings are executed. In the execution of a binding, three situations may
arise according to the nature of the right-hand side.

1. If it is a literal value, the value is directly assigned to the property of the
left-hand side.

2. If it is a query identifier, the query is executed and a rule resolving this
binding is looked up in the transformation definition, i.e. a rule whose types

www.manaraa.com

92 J.L.C. Izquierdo and J.G. Molina

of the from and to parts conform to the types of the right-hand side and left-
hand side of the binding, respectively. Whenever a conforming rule is found,
it is applied by using the element of the right-hand side of the binding as
the source grammar element.

3. If it is an expression, it is evaluated and two situations may arise, depending
on whether the result is a node whose type corresponds to a terminal (a leaf)
or a non-terminal symbol. If it is a leaf, the result is a primitive type and is
directly assigned, otherwise, a rule to resolve the binding is looked up and
executed, as was explained in the previous case.

4.2 Implementation

The first step in the execution of a Gra2MoL transformation is to build the CST
of the source code. Current implementation of Gra2MoL uses ANTLR grammar
definitions. These definitions can be enriched with actions in order to create the
CST. However, we are interested in using ANTLR grammar definitions without
attached actions for two reasons: (1) to alleviate the grammar developer from
the burden of creating the CST programmatically and (2) to promote grammar
reuse. We have therefore defined an enrichment process which automatically
adds the actions needed to build the CST to the grammar rules.

Gra2MoL uses a metamodel internally to generically represent CSTs of the
parsed source code. This metamodel is shown in Figure 5. There are three kinds
of elements in a CST model, namely Leaf, Node and Tree. Leaf represents a
tree node which corresponds to a recognized terminal symbol. Node represents
a tree node which corresponds to a recognized non-terminal symbol and is com-
posed of one or more children nodes, either of the Leaf or Node type. The type
attribute identifies the grammar symbol whose recognition has yielded the tree
node creation (this is needed to navigate through the CST, as was explained
in Section 3). Finally, Tree represents the root node of the tree. The creation
of models conforming to this metamodel is driven by the conformance rules
explained in Section 3.

Fig. 5. CST metamodel (MMCST)

The execution process of a Gra2MoL transformation is shown in Figure 6(b),
together with a schema of the pre-processing step T to enrich the ANTLR gram-
mar in Figure 6(a). Note that 6(b) is the same as Figure 1, except that a parser

www.manaraa.com

A Domain Specific Language for Extracting Models 93

Fig. 6. Gra2MoL implementation

is an input to the Gra2MoL engine to build the CST model. This parser is gen-
erated from the grammar (Ge) enriched with actions intended to create CST
models conforming to the metamodel MMCST shown in Figure 5.

5 Example

Oracle Forms is an Oracle technology used to design and build enterprise ap-
plications in which the business logic and database access is encapsulated in
PL/SQL triggers. The source code of such applications is organized in sequences
of statements in which each sequence corresponds to a trigger. Gra2MoL has
been used within the context of a project to migrate Oracle Forms applications
to Java platform, in order to extract models from PL/SQL code. We implemented
a Gra2MoL transformation definition to extract models conforming to a meta-
model representing a subset of the PL/SQL abstract syntax. This transformation
definition consists of 57 rules1. An excerpt of this transformation definition will
be shown as follows. Figure 7 shows the parts of the PL/SQL grammar and the
PL/SQL metamodel considered in this example.

rule createPLSQLDefinition

from create_package cp

to PLSQLDefinition

queries

seqt : /cp//#seq_of_statements;

mappings

triggers = seqt;

end_rule

rule createTriggerBlock

from seq_of_statements seqt

to TriggerBlock

queries

stats : /seqt/#statement;

mappings

statements = stats;

1 The complete transformation definition can be downloaded from
http://modelum.es/gra2mol

www.manaraa.com

94 J.L.C. Izquierdo and J.G. Molina

Fig. 7. Excerpt of the PL/SQL grammar and the subset of PL/SQL metamodel used
in the example. The non-terminal symbols used in the example are underlined.

end_rule

rule createReturnStatement

from statement/return_statement st

to ReturnStatement

mappings

end_rule

rule createFunctionCallStatement

from statement/function_call st

to FunctionCallStatement

queries

fc : /statement/#function_call;

iden : /fc/user_defined_function//#identifier;

params : /fc///#call_parameter;

mappings

name = iden.ID;

parameters = params;

end_rule

www.manaraa.com

A Domain Specific Language for Extracting Models 95

rule createFunctionCallParamForFunctionCall

from call_parameter cp

to FunctionCallParameter

queries

iden : /cp/parameter_name/#identifier;

mappings

name = iden.ID;

end_rule

The first rule starts the transformation process by creating an instance of
PLSQL Definition. This rule has only one binding whose right-hand side is
a query identifier and whose left-hand side refers to the triggers attribute of
the PLSQLDefinition metaclass. The query is therefore executed and the rules
conforming the binding are then looked up and executed. In this example,
the createTriggerBlock rule would create instances of TriggerBlock and
would apply the statements = stats binding, whose right-hand side is a query
identifier and whose left-hand side refers to the statements attribute of the
TriggerBlock metaclass. In this case, both createReturnStatement and
createFunctionCallStatement rules conform to the binding, but the filter of
these rules allows the selection of only one, depending on the direct children
of the statement grammar element. The createFunctionCallStatement rule
illustrates the meaning of the // and /// operators. On the one hand, the //
operator used in the second query avoids the need to specify every navigation
step (i.e. sql identifier) to reach the identifier node. On the other hand, since
the call parameter production rule is defined recursively, the /// allows the
CST to be traversed in order to retrieve every call parameter node.

It is worth mentioning how clear and legible the transformation shown above
is. Both the implicit rule application driven by the bindings and the format of the
queries make it a clean language. Moreover, the query format also contributes
towards improving the legibility of the CST retrievals. Figure 8 shows the result
of an execution of this transformation definition.

Fig. 8. Result of a Gra2MoL transformation execution

6 Conclusions and Future Work

In this paper, we have presented Gra2MoL, a DSL for extracting models from
GPL source code by means of grammar-to-model transformations. Gra2MoL has
therefore been designed as a rule-based language inspired by languages such as
ATL and RubyTL. A Gra2MoL transformation definition consists of rules which

www.manaraa.com

96 J.L.C. Izquierdo and J.G. Molina

transform grammar elements into model elements by manipulating the CST of
the source code. A powerful language has been defined to navigate and query a
CST in a structure-shy manner. Several benefits will be derived from this new
approach, in comparison to existing solutions.

With regard to the implementation of a dedicated parser, our approach con-
siderably reduces the development time, and maintainability is also favored.
Mappings and queries are not hard-coded in the code of a programming lan-
guage, but are specified in a clear, concise and legible manner.

We have also compared Gra2MoL to grammarware-MDE bridging and pro-
gram transformation approaches. Since neither of these approaches was devised
for the extraction of models from GPL code, both require the performance of
difficult tasks. On the one hand, bridging approaches were designed to create
DSL, and are therefore not very practical for dealing with GPL. For instance,
xText generates low-level models, and model-to-model transformations have to
be defined. On the other hand, a program transformation approach could be
used but the developer is required to write a target grammar specification and
to define a bridge to convert the program generated into a model; Gra2MoL
transformations are, moreover, simpler than those transformations expressed by
the more commonly used transformational approaches, which use formalisms
such as rewriting techniques.

With regard to future work, we are working on several issues such as a mod-
ularity mechanism for Gra2MoL transformations and the identification of query
patterns to make the query definition independent from the grammar structure.
We are also analyzing how to integrate Gra2MoL in the Modisco framework as a
mechanism through which to create discoverers. Moreover, since Gra2MoL deals
solely with ANTLR grammars, we would like to support other parser generators
in order to increase the number of existing grammars that can be reused.

Acknowledgment

This work has been supported by Consejeŕıa de Educación y Cultura (CARM,
Spain), grant TIC-INF 06/01-0001 and Fundación Séneca (Murcia, Spain), grant
08797/PI/08. Javier Luis Cánovas Izquierdo enjoys a doctoral grant from the
Fundación Séneca.

References

1. Architecture-Driven Modernization Roadmap. OMG (2006)
2. ADM Task Force: Knowledge discovery meta-model (kdm). OMG (2007)
3. MoDisco, http://www.eclipse.org/gmt/modisco/
4. van Deursen, A., Visser, E., Warmer, J.: Model-driven software evolution: A re-

search agenda. In: Workshop on Model-Driven Software Evolution (2007)
5. ADM Task Force: Architecture-driven modernization scenarios. OMG (2006)
6. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-

ware. ACM Transactions on Software Engineering Methodology 14(3), 331–380
(2005)

http://www.eclipse.org/gmt/modisco/

www.manaraa.com

A Domain Specific Language for Extracting Models 97

7. Efftinge, S.: openarchitectureware 4.1 xtext language reference (2006),
http://www.eclipse.org/gmt/oaw/doc/4.1/r80xtextReference.pdf

8. Wimmer, M., Kramler, G.: Bridging grammarware and modelware. In: Bruel, J.-M.
(ed.) MoDELS 2005. LNCS, vol. 3844, pp. 159–168. Springer, Heidelberg (2006)

9. Stratego/XT, http://strategoxt.org/
10. TXL, http://www.txl.ca/
11. Jouault, F., Kurtev, I.: Transforming models with atl (2005)
12. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: Rubytl: A practical, extensible trans-

formation language. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS,
vol. 4066, pp. 158–172. Springer, Heidelberg (2006)

13. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a dsl for the specification of textual
concrete syntaxes in model engineering. In: GPCE, pp. 249–254 (2006)

14. van Wijngaarden, J., Visser, E.: Program transformation mechanics. a classification
of mechanisms for program transformation with a survey of existing transformation
systems, Department of Information and Computing Sciences, Utrecht University,
Tech. Rep. UU-CS-2003-048 (2003)

15. Andrade, L.F., Gouveia, J., Antunes, M., El-Ramly, M., Koutsoukos, G.: Forms2Net
- Migrating Oracle Forms to Microsoft .NET. In: GTTSE, pp. 261–277 (2006)

16. Migrating Visual Basic Applications to VB.NET using the NewCode extension for
Microsoft Visual Studio. Newcode (2008)

17. JDT Eclipse project, http://www.eclipse.org/jdt
18. GMT Eclipse project, http://www.eclipse.org/gmt
19. OpenArchitectureWare toolkit, http://www.openarchitectureware.org
20. Kunert, A.: Semi-automatic generation of metamodels and models from gram-

mars and programs. In: Fifth Intl. Workshop on Graph Transformation and Visual
Modeling Techniques, E. N. in Theorical Computer Science, vol. 211, pp. 111–119
(2008)

21. Linda Heaton. Meta Object Facility (MOF) 2.0 Query/View/Transformation Spec-
ification. OMG (2005)

22. OCL constraint language. OMG (2006),
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf

23. van Wijngaarden, J.: Code Generation from a Domain Specific Language, M.Sc
Thesis (2003)

24. Xpath, http://www.w3.org/TR/xpath

http://www.eclipse.org/gmt/oaw/doc/4.1/r80xtextReference.pdf
http://strategoxt.org/
http://www.txl.ca/
http://www.eclipse.org/jdt
http://www.eclipse.org/gmt
http://www.openarchitectureware.org
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf
http://www.w3.org/TR/xpath

www.manaraa.com

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 98–113, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Challenges in Combining SysML and MARTE for
Model-Based Design of Embedded Systems

Huascar Espinoza1, Daniela Cancila1, Bran Selic2, and Sébastien Gérard1

1 CEA LIST, Model-Driven Engineering Labs (LISE)
Point Courrier 94, 91191, Gif sur Yvette, France

{huascar.espinoza,daniela.cancila,sebastien.gerard}@cea.fr
2 Malina Software Corporation

10 Blueridge Court, Nepean, Ontario, Canada
selic@acm.org

Abstract. Using model-based approaches for designing embedded systems
helps abstract away unnecessary details in a manner that increases the potential
for easy validation and verification, and facilitates reuse and evolution. A com-
mon practice is to use UML as the base language, possibly specialized by the
so-called profiles. Despite the ever increasing number of profiles being built in
many domains, there is still insufficient focus on discussing the issue of com-
bining multiple profiles. Indeed, a single profile may not be adequate to cover
all aspects required in the multidisciplinary domain of embedded systems. In
this paper, we assess possible strategies for combining the SysML and MARTE
profiles in a common modelling framework, while avoiding specification con-
flicts. We show that, despite some semantic and syntactical overlapping, the
two are highly complementary for specifying embedded systems at different ab-
straction levels. We conclude, however, that a convergence agenda is highly de-
sirable to align some key language features.

Keywords: model-based engineering, embedded systems, SysML, MARTE.

1 Introduction

The design of embedded systems is a complex process that depends more and more
on the effective interplay of multiple disciplines, such as mechanical, electronics, and
software engineering. In particular, the lack of a common design language between
different disciplines hampers reasoning about system properties. The architecture of a
system is particularly vulnerable to bad design choices made in the early design
phases, which, unfortunately, often tend to show up later during the integration or
construction phases. Designers of one part of the system may make wrong assump-
tions concerning some other parts resulting in increasing development costs due to
long feedback cycles.

The use of models throughout the design process is gaining momentum in address-
ing these issues [20]. Models allow designers from different disciplines to share
knowledge, facilitate design comprehension, and assess system-level trade-offs seek-
ing higher quality and reliability. We subscribe to the view that both system design

www.manaraa.com

 Challenges in Combining SysML and MARTE for Model-Based Design 99

and integration will be reduced significantly by the use of a common modelling for-
malism, even for smaller projects. In particular, we believe that the widespread accep-
tance of UML (Unified Modelling Language) [16] by industry and the use of UML
profiles for domain-specific expressiveness ease the challenge considerably. A profile
is the mechanism standardized by the OMG for creating domain-specific modelling
languages by refining the concepts of an existing standard language such as UML.

A number of UML profiles have been proposed for modelling embedded systems,
both within a standardization context and as research outcomes [12]. In our work,
standardization is a crucial concern since it promotes lower overall training costs and
helps to reduce the risk of being dependent on a single tool vendor. We particularly
focus on two standard UML profiles that cover, as a whole, a broad cross-section of
the modelling capabilities required for the embedded system domain. On the one
hand, SysML (Systems Modelling Language) [17] provides constructs to specify
traceable requirements, structure and behaviour of system blocks, as well as a para-
metric formalism to specify equation-based analytical models. On the other hand,
MARTE (Modelling and Analysis Real-Time and Embedded systems) [18] deals with
time- and resource-constrained aspects, and includes a detailed taxonomy of hardware
and software patterns along with their non-functional attributes to enable state-of-the-
art quantitative analyses (e.g., performance and power consumption).

A major impediment to any kind of real-world application is that a single profile
may not be sufficient to capture all aspects in the multidisciplinary domain of embed-
ded systems. A number of industrial and research efforts have started to consider the
use of both profiles in a synergistic manner, as described in more detail in Section 5,
to cover as much as possible the description of embedded systems at different abstrac-
tion levels (e.g., [9] [14] [11] [1]). However, even in the standards world, different
profiles may be mutually inconsistent and may overlap in ways that are not fully
documented. Hence, it is essential to investigate ways of combining these two UML
profiles to avoid conflicts and mismatches.

In this paper, we provide the basis for a comparison between the two profiles. The
purpose is to identify some typical scenarios in which their combined usage is of rele-
vant added value in the embedded systems domain and, to provide a convenient start-
ing point for those interested in using both profiles in a complementary manner. One
problem is that, because they are constructed for different purposes and follow differ-
ent design rationales, they tend to define different syntaxes for the same modelling
concepts. This issue immediately puts profile users in a dilemma when they try to ex-
ploit both profiles in the same system model. Some minimum alignment is necessary
to deal with such overlaps. Consequently, another objective of this paper is precisely
to encourage the SysML and MARTE standardization task forces to provide a con-
vergence and alignment program for their respective technologies.

The remainder of the paper is organized as follows. Section 2 outlines SysML and
MARTE and their respective modelling capabilities. Section 3 introduces some antici-
pated scenarios that combine concepts from both expressiveness domains. In Section 4,
we provide some strategies to properly compare and integrate common modelling con-
structs. Section 5 discusses contributions and shortcomings of other attempts at com-
bining both profiles. A short discussion and conclusions round out the paper.

www.manaraa.com

100 H. Espinoza et al.

2 Background

2.1 UML Profiling Capabilities

Because of the diverse nature of the disciplines needed for designing real-time and em-
bedded system, it is clear that a single modelling language is not adequate to cover all
the various concerns involved. Consequently, there has been much discussion about the
suitability of UML for such domains compared to custom domain-specific modelling
language designed from scratch [9]. The latter approach has the obvious advantage of
enabling the definition of a language that is optimally suited to the problem at hand. At
first glance, this may seem the ideal approach to modelling language definition, but
closer examination reveals that it can have serious drawbacks. If each sub-domain is
expressed using a specific language, there is the problem of integrating the various
parts of the design so that the full system can be verified, or simply unambiguously
understood. Another drawback of domain-specific languages is the availability of and
support for industrial-strength tools and training for a such custom language (commer-
cial tool vendors are rarely interested in supporting custom or low-volume languages).
This can lead to significant and recurring expenses related to developing and support-
ing custom tools and providing training for them.

In contrast, although UML was designed to eliminate the accidental complexity
stemming from gratuitous diversity, it still provides a built-in mechanism, profiles, for
creating domain-specific modelling languages (DSML). Profiles are based on special-
izing the general UML concepts and semantics and can, therefore, take advantage of
existing UML tools and expertise. For example, the domain-specific concept of a real-
time clock can be derived from the more generic UML concept of an object, by the
addition of new attributes and additional semantic constraints. It is even possible to
use a domain-specific notation in lieu of the standard UML notation. This kind of re-
use can mitigate or even eliminate some of the above drawbacks of custom DSMLs

Another advantage of the profile approach is that a profile can be defined as an
annotation profile, meaning that it can be overlaid, non-intrusively, on an existing
model to provide supplemental information and semantics not present in the original
model. Such profiles can be applied to create domain-specific views and specializa-
tions of an underlying model. This is especially useful in multidisciplinary problems
for the ability to capture cross-domain concerns. For example, a UML model can be
annotated with information such that it can be analyzed for its schedulability charac-
teristics by domain experts or specialized tools. At the same time (and independently
of the schedulability view) a reliability engineer might overlay a reliability-specific
view on that same model to determine its overall reliability characteristics. Some
parts of the MARTE profile are significant examples of this profile usage.

2.2 SysML and MARTE Modelling Capabilities

SysML and MARTE consider characteristics of the embedded systems domain at dif-
ferent abstraction levels, architectural styles, and particularly for specific purposes or
application areas. In this section, we summarize their major modelling capabilities.

www.manaraa.com

 Challenges in Combining SysML and MARTE for Model-Based Design 101

SysML is a UML profile "for specifying, analyzing, designing, and verifying complex
systems that may include hardware, software, information, personnel, procedures, and
facilities" [17]. The so-called Block concept is the common conceptual entity that fac-
torizes many different kinds of system elements such as electronic or software compo-
nents, mechanical parts, information units, and whatever structural entity composing
the system under interest. Blocks articulate a set of modelling perspectives enabling
separation of concerns during systems design. Eschewing excessive detail1, we identify
the following key contributions of SysML regarding UML:

• Architecture Organization: These include modelling concepts to organize sys-
tem architecture descriptions as defined by the IEEE 1471 standard [6].
Among them, the concepts of view, viewpoint, and rationale are most impor-
tant.

• Blocks and Flows: Block description and internal block diagrams of SysML
enable the specification of more generic interactions and phenomena than
those existing just in software systems. This includes physical flows such as
liquids, energy, or electrical flows. The dimension and measurement units of
the flowing physical quantities can be explicitly defined.

• Behaviour: Although most behaviour constructs in SysML are similar to
UML (interactions, state machines, activities, and use cases), SysML refines
some of them for modelling continuous systems and probabilities in activity
diagrams.

• Requirements: SysML provides an explicit facility for modelling system re-
quirements, along with their traceability with regard to the architecture evolu-
tion. These can be specified in either graphical or tabular format.

• Parametrics: A perspective called parametric diagram allows SysML users to
describe, in a graphical manner, analytical relationships and constraints, such
as those described by mathematical equations. Parametric diagrams provide a
mechanism for integrating SysML design models with engineering analysis.

MARTE is a UML profile that supports specification of real-time and embedded
systems [18]. In addition to functional design, this profile adds constructs to describe
the hardware and software (e.g., OS services) resources and defines specific proper-
ties to enable designers to perform timing and power consumption analysis. With re-
gard to UML, MARTE adds the following features2:

• NFPs. The NFPs (Non-Functional Properties) modelling framework provides
means to specify semantically well-formed non-functional properties (e.g.,
throughputs, bandwidths, delays, memory usage), supported by a language to
formulate algebraic and time expressions.

• Time. A highly refined model of time and timing mechanisms integrates con-
cepts from different sub-domains in embedded systems design, such as causal
time, synchronous time, and chronometric time.

• Software application. A common model of computation provides semantic
support for the real-time object paradigm. This paradigm allows specifying

1 Further information on SysML can be found via http://www.omgsysml.org/
2 Further information on MARTE can be found via http://www.omgmarte.org/

www.manaraa.com

102 H. Espinoza et al.

applications at a high abstraction level, by delegating concurrency, communi-
cation, and time-constraint aspects to a modular unit called real-time unit
(RtUnit).

• Components. The MARTE component model extends UML composite struc-
tures and SysML internal block diagrams with a notion of message-based
communications. This is intended to support the request-reply/publish-
consume communication paradigm.

• HW/SW Resources. Software and hardware resources can be described at differ-
ent levels of abstraction, including their typical services, as found in common
OS platforms, and common non-functional properties like power consumption
or memory usage.

• Quantitative Analysis. A set of pre-defined non-functional annotations enable
MARTE models to bridge with state-of-the-art performance and scheduling
analysis tools.

3 Scenarios of Combined Usage

To focus our study, we identify a set of representative scenarios in which a combined
usage of SysML and MARTE is of relevant added value in the embedded systems
domain. Although this set is certainly incomplete, it allows us to drive our comparison
in a more focused manner. The intent is to adequately answer the question of what
can each profile target best in modelling, and then determine their integration issues.

3.1 Defining Architecture Frameworks

The modelling capabilities of both SysML and MARTE are rich enough for a wide
range of design approaches. This has the flexibility for supporting and integrating
multiple design perspectives, but also the difficulty of understanding and choosing
among a variety of language alternatives. In both cases, there is not a predetermined
approach to use the language constructs through the development lifecycle. This
means that a consistent modelling framework and methodology should be defined for
using these profiles in a particular application domain.

Architecture Organization. In the IEEE 1471 standard (and in the draft of its up-
coming update ISO/IEC 42010), the concept of modelling framework is referred as
architecture framework. An architecture framework "establishes a common practice
for creating, organizing, interpreting and analyzing architectural descriptions used
within a particular domain of application or stakeholder community" [6]. An architec-
ture framework identifies one or more predefined architectural viewpoints. View-
points define how to construct views, which are in turn a representation of a system
from the perspective of a set of modeling concerns.

SysML implements IEEE 1471 by providing a set of constructs to organize models.
In particular, SysML does not define any specific viewpoint, but it provides means to
specify how views are built, and to relate any user-specific view to a given viewpoint.
This is aligned with the IEEE 1471 approach that envisages libraries of viewpoints, in
order to enable architects selecting those useful for system design at hand.

www.manaraa.com

 Challenges in Combining SysML and MARTE for Model-Based Design 103

Although MARTE does not provide any concrete model element to define view-
points, it has an implicit conception of viewpoints rooted in its design rationale. In-
deed, some of the MARTE constructs have been designed to define domain-specific
viewpoints (see Section 2.1). Such viewpoints, when applied to a standard UML
model, cast that model in a domain-specific way and may also add supplementary in-
formation to the model relevant to the viewpoint.

In consequence, there is no language overlapping in this respect. SysML and
MARTE can be used in complementary way. While SysML provides means to create
viewpoints in a general way, MARTE provides particular viewpoints. However, an
open issue is to enable designers of architecture frameworks to build consistent inter-
view rules that ensure meaningful and correct-by-construction models.

3.2 Requirements Engineering

System Usage Scenarios. Requirements engineering is the process by which the re-
quirements for systems and software products are gathered, analyzed, documented,
and managed throughout the development life cycle. UML has traditionally been used
to document user requirements by means of use case diagrams. Use cases follow a
graphical, scenario-based approach. This means that requirements are organized into
system usage histories, acting as a user-friendly bridge between technical and busi-
ness stakeholders.

Although use cases may be formalized to certain degree, for example by using se-
quence diagrams in order to detail such usage histories, they are often criticized for a
number of limitations. For instance, use cases lack well-defined semantics, which
may lead to differences in interpretations by stakeholders [22]. They are applied
mainly to model functional requirements, but are not very helpful to model non-
functional ones. Also, relationships between requirements and the various architec-
tural parts that satisfy those requirements are difficult to trace. SysML and MARTE
provide some significant enhancements in these aspects.

Requirements Management/Traceability. SysML requirements diagrams explicitly
show the various kinds of relationships between different requirements. This enlarges
the spectrum of requirements engineering tools that can interact with UML tools. In
effect, the SysML requirements modelling constructs are intended to provide an
automated bridge between architectural models and traditional requirements man-
agement tools such as, for instance, Requisite Pro, Rectify, or DOORS [1]. The latter
provide support for traceability analysis, flow-down, derivation, assignment, among
other requirement engineering activities. In particular, requirements tracing is very
useful, for example, to identify how requirements are affected by changes, and to pri-
oritize requirements. Traceability also provides a possibility of verifying whether or
not all requirements have been fulfilled by the system and sub-system components.

Non-Functional Requirements. On its side, MARTE offers key features to specify
non-functional requirements in general and timing requirements in particular. In embed-
ded systems development, non-functional characteristics (e.g., performance, reliability,
power consumption) influence a wide range of design decisions [3]. One possible sce-
nario is using MARTE annotations to characterize non-functional constraints in use case
diagrams and their underlying sequence diagrams. This provides two important capa-
bilities leading toward more formal requirements specification.

www.manaraa.com

104 H. Espinoza et al.

First, non-functional requirements are cohesively specified along with functional re-
quirements. While specifying non-functional aspects is possible with SysML require-
ments diagrams, their semantic relationship to concrete functional system usages is
hard to capture. In particular, the completeness of requirements satisfaction in real-time
systems is strongly dependent on the coupling between system function and timing. In
MARTE, timing annotations provide semantic definitions closely related to the system
behavior. For instance, one may define a jitter constraint in the arrival of an event and
identify if such event relates either to a send, receive, or consume occurrence within a
sequence diagram. Second, non-functional annotations follow a well-defined textual
syntax, which is supported by the MARTE’s Value Specification Language (VSL).
The main advantages of this level of formalization are the ability to support automated
validation, verification, traceability, and, more simply, an unambiguous understanding
by stakeholders.

Clearly, SysML and MARTE concepts, articulated by use cases and scenarios, are
highly complementary. While scenarios are useful for managing change and evolu-
tion, managing scenario traceability across multiple changes becomes increasingly
difficult. SysML contributes with constructs to define such traceability relations. Ad-
ditionally, MARTE completes scenario precision with well-formed non-functional
annotations. However, it is important to define clear consistency rules to combine
them in a typical development process using different requirements engineering tools.

3.3 System-Level Design Integration

In a typical development process for embedded systems, software and other forms of
engineering will be at least partially concurrent. The system is developed by composing
pieces that, all or in part, have already been pre-designed or designed independently by
different teams specialized in different disciplines. This is often done in vertical design
chains such as, for example, in the avionics and automotive industries. Therefore, there
is a need for supporting design artefacts by common and standard specification formal-
isms that will allow plug-and-play of subsystems and their implementation [23].

A model view is a typical abstraction that helps to divide a complex problem into
smaller and comprehensible parts. In order to integrate global models, e.g., for per-
forming system-level analysis, we must recombine these smaller parts in a consistent
way. UML supports model composition by means of composite structure diagrams.
The basic principle is to define usages of model elements in a given context. The idea
of composite system models is to describe how information from multiple modelling
artefacts and views is to be joined, deployed, or configured. Although there is a lin-
guistic divergence3, both SysML and MARTE reuse this notion with some particulari-
ties. Thus, some aspects need to be taken into consideration for their combined use.

Hierarchy and Composition. To understand the pragmatic problems of SysML-
MARTE joint usage, let us consider the scenario of a large development project with
engineers from multiple disciplines. It should be carefully decided how the system
model will be created by integrating the models from different disciplines. One im-
portant issue is the layering and mismatched sub-system hierarchies, which has been

3 While SysML uses the term "block" for such composition units, MARTE uses "structured

component".

www.manaraa.com

 Challenges in Combining SysML and MARTE for Model-Based Design 105

comprehensively addressed by Maier [15]. For instance, in multiprocessor software-
intensive design, the electronic system perspective typically represents a hierarchy of
interconnected processors, each containing software units. From the software perspec-
tive, the hierarchy is reversed, as generally illustrated in MARTE examples [18]. At
the top is a distributed application, composed of software units that interact through
data- and message-based interfaces. Below the application are the operating system
(OS) and library layers that support the distributed application. At the bottom of the
hierarchy, the hardware (processors and networks) completes the model.

This aspect is important when deciding which kind of modelling constructs will be
used to represent hierarchy, allocation/deployment, and composition. For instance,
while a composition relationship would be used for the hardware viewpoint, an allo-
cation relationship (supported by both SysML and MARTE) would be preferred by
the software designers. Some compatibility or merging rules need to be defined to
provide system-level consistency.

While in some cases, engineers from a given discipline would exclusively use ei-
ther SysML or MARTE, in other cases they would need to combine concepts from
both profiles. An integration scenario may consist in starting from a system-level
model, probably specified with SysML blocks, and in adding later some additional
semantics to some of these blocks, for example by applying MARTE stereotypes. In-
deed, the detail level underlying MARTE constructs makes possible to specify some
aspects such as concurrency and synchronization mechanisms, as well as resource
patterns such as processing resources, communication buses, or power supply devices
along with a set of predefined quality attributes. This is especially required in applica-
tion areas where designers are interested in preparing models to perform simulation,
quantitative analysis or product synthesis.

Interfacing/Interaction. A central concern in system and software architecting is to
understand the interfaces and interactions between structural elements. The nature of
such interfaces and interactions can significantly vary from software to other kind of
systems. Looking at the structural aspects, we can see that MARTE adopted the no-
tions of port and flow from SysML. This may seem very convenient from a perspec-
tive of semantic consistency. However, SysML flow ports require careful attention
when used to model flows of physical quantities, such as for example energy or
torque. Cares must be exercised in defining explicit behaviour on flow transmission.
SysML physical flows are often continuous in time, whereas MARTE flows are used
to describe data transmission with particular delegation semantics. While providing a
precise semantics to flows is currently outside the scope of both profiles, their com-
bined use should define a common "semantic envelope" that could be shared by
SysML and MARTE. In this way, composing models from different disciplines will
preserve system-level consistency.

3.4 Engineering/Quantitative Analysis

Engineering analysis (SysML term) or quantitative analysis (MARTE term) concern
the use of mathematical techniques to study certain quality attributes of the system.
They include stress, thermal or fluid analysis in mechanical engineering, and per-
formance or reliability analysis in software engineering. One challenging problem in
model-based engineering is to integrate models that are commonly used for system

www.manaraa.com

106 H. Espinoza et al.

production or software code generation with the information that is relevant to per-
form analysis [7]. The goal is to reduce the time required to prepare a design model
for performing analysis and to ensure greater accuracy of an analysis model by di-
rectly associating it with the actual system model. Both SysML and MARTE provide
key contributions in this direction, but some alignment work has to still be done.

Timing Modelling. Beyond the annotation of quality attributes, timing analysis re-
quires a careful semantic definition closely related to the system behavior and the dif-
ferent models of computation and communication [2]. SysML does not extend the
UML time model, but a set of preliminary requirements were established by its stan-
dardization board, including continuous time models and relativistic effects that can
occur in distributed systems. In MARTE, time modelling is a core concern. We can
distinguish at least three layers of time constructs:

• In a first layer, time is presented as a set of fundamental notions such as time in-
stant, duration, time bases, or clocks. These provide an unambiguous basis to
express further modeling constructs and well-formed value spaces for data types.

• In a second layer, MARTE provides mechanisms to annotate timing require-
ments and constraints in UML models. One key modeling feature is the concept
of observation. Observations provide marking points in UML models to specify
assertions. Some typical assertions have been embedded in ready-to-use patterns,
such as for example jitters.

• In the third layer, time concepts are defined as part of the behavior, not mere an-
notations. This set of constructs cover both physical and logical time. While the
logical time is the basis to understand basic temporal notions, this is further re-
fined to support precedence/dependency in presence of concurrency, and
clocked time abstractions to cover synchronous language abstractions (such as
those from Lustre, Signal or Esterel).

While the adoption of the two basic layers is certainly useful for system engineering
in general, the third layer would need some extensions to include, for example, mod-
elling of the continuous dynamics of systems [12]. This would need to provide means
to specify system behaviour in terms of hybrid discrete event and differential alge-
braic equation systems.

Quantities Values. In SysML, a value property represents a quantifiable characteris-
tic of a block (e.g. energy consumption, surface, and temperature range of a micro-
processor). Value properties are defined in block compartments by assigning a name
and a value type. A value type is a kind of data type that carries a particular pair con-
sisting of a dimension and a measurement unit.

For its part, MARTE uses its Non-Functional Properties (NFPs) modelling frame-
work. The NFPs modelling framework provides the ability to encapsulate rich annota-
tions within non-functional values. For instance, consider a property named ``latency".
Instead of specifying its meaning in an axiomatic way such as: "duration in millisec-
onds with an accuracy of 0.01 measured by simulation as a mean value", the specifica-
tion itself include all this information in a normalized syntax. For this purpose, the
MARTE data type system includes the required data structure (value, unit, precision,
measurement source, etc.) in a predefined library. For example, Duration, Frequency

www.manaraa.com

 Challenges in Combining SysML and MARTE for Model-Based Design 107

and Power are typical non-functional data types. Different units of the same physical
quantity may be transformed to, or expressed in terms of, existing base units through a
given conversion factor and an offset factor.

One of the main issues when trying to combine both profiles is that the modelling
approaches to declare and specify quantitative values is quite different. The main dif-
ference is that SysML hard coded the qualification of value types with the stereotypes
unit and dimension, while MARTE allows for declaring a set of qualifiers as an ex-
tendable library. As a consequence, using both modelling mechanisms in the same
model may lead to inconsistencies and cumbersome model processing. Alignment of
these two modelling styles is a key issue that is being dealt as a joint effort between
the MARTE and SysML task forces at OMG.

Beyond syntactical issues, the debate should be centred on providing practical ca-
pabilities to both profiles. We believe that at least two key capabilities should be al-
lowed from SysML and MARTE models:

• Measurement conversion. Quantities need to be expressed in different measure-
ment units while still allowing tools to convert quantities from one set of units to
another.

• Dimensional analysis. Physical expressions must guarantee the consistency of
equations and solve resulting measurement units and dimensions.

If we look at SysML, it forces tools to be hard-coded with the transformations between
measurement units (e.g., from "mm" to "m") because unit definition lacks conversion
factors. Furthermore, dimensional analysis is not possible in SysML since dimensions
are not defined in terms of basic dimensions and their exponents (e.g., F = LMT-2).
Conversely, while MARTE supports unit conversion, the notion of dimension has not
been considered at all.

Parameters/Expressions. Parameterized expressions are a primary feature in order to
prepare models for analyzing performance, risk, costs, and so on [7]. SysML paramet-
ric diagrams capture constraints among performance, physical, and other quality-
related properties of the system and its environment. Such constraints are specified as
equations among value properties. Equations can be specified in a third-party language
(e.g., MathML or Modelica). The basic composite modelling entity is the Constraint
Block. The relationships between modelling entities within a constraint block are not
committed to an 'input' or 'output' role early. Thus, they are called non-causal, as op-
posed to data flow and control flow approaches. Non-causal models are suitable to en-
able analytic processing, and can increase the level of integration/automation between
design tools and analysis tools.

In addition, MARTE’s VSL gives the syntax to formulate algebraic and time ex-
pressions. VSL is rooted in OCL. However, VSL was intended to provide more com-
pact expressions. In addition, VSL extends arithmetic and logical expressions with
time-related annotations, which can be extended by libraries providing new functions.

We believe that a combined use of SysML parametric diagrams and VSL would
provide significant advantages. While parametric diagrams provide a user-friendly
formalism to specify non-causal models, VSL provides the textual syntax for con-
straint expressions. One open issue in VSL is its extension to support special expres-
sions used in system engineering. For instance, differential and integrals, continuous
time expressions, and discrete event equations.

www.manaraa.com

108 H. Espinoza et al.

4 Combination Strategies

In this section, we outline some issues in combining SysML and MARTE and propose
general strategies to integrate both profiles in a single modelling framework. Table 1
summarizes the modelling aspects discussed in Section 3 along with a set of profile
combination cases and implementation issues, which are elaborated below.

Table 1. MARTE/SysML Combination Issues

Modelling Concern
(from Section 3)

SysML concepts
(examples)

MARTE concepts
(examples)

Conflicting Com-
bination Cases*

Implementation
Issues*

Architecture Organization view, viewpoint, ration-
ale,…

- - predefine library of
MARTE viewpoints

Hierarchy/Composition block, part, allocation structural component, parts,
hw/sw patterns, application-

platform allocations

(a) (1) & (2)

Interfacing/Interaction port, flow, items idem SysML + message-
based

(a) (c) (2)

Spectrum of Behavioral
Models

rate, continuous, discrete
edges, probability,…,

synchronous/asynchronous,
causal/real-time

(c), (d) (1)

System Usage Scenarios use case, sequence dia-
grams

use cases, sequence dia-
grams

common UML

concepts

-

Requirements Process-
ing/Trace

requirement, trace rela-
tionships, test case

- - (1) SysML re-
quirements can be

fully imported

Non-Functional Re-
quirements

requirement nfp constraint, VSL expres-
sions

complementary (1)

Time Modelling (UML) time constraints extended time constraints,
clocks, predefined nfp’s for

time analysis

- (1) & (2) not all
MARTE time no-

tions required

Quantity Values value property, value
type, unit, dimension

nfp, nfp type, unit (c) (d)
overlapping

(2) language
alignment required

Parameters/Expressions constraint blocks, para-
metric diagrams

VSL expressions (c)

complementary

(1) VSL as ex-
pression language

* see text for full explanations

Combination Case. We can generalize typical categories of the combined usage of
UML profiles (this is applicable for two or more profiles) as follows:

a) Each language is used for different partitions of the system, in which case they
are practically mutually exclusive and conflicts are small or even negligible. For
example, SysML is used for mechanical design and MARTE for software de-
sign. As shown in Table 1, this category needs special attention when defining
the hierarchy/composition and interfacing/interaction constructs during a sys-
tem-level integration phase.

b) Each language is used for a different level of abstraction. Again, there is not
much conflict here. For instance, SysML is used for system domain analysis and
MARTE for a detailed design.

c) The languages are used in combination into the same parts of a model (e.g., in
the same modelling view) and for the same purpose or concern. For instance, we
may use the SysML facilities for continuous behaviour in activity diagrams and
the MARTE time annotations to support performance analysis.

www.manaraa.com

 Challenges in Combining SysML and MARTE for Model-Based Design 109

d) The languages are used in combination but for different purposes such as, for
example, using MARTE annotations to do performance analysis on a SysML
model. The UML profiling capabilities of being able to apply many stereotypes
to a single model entity is crucial for this kind of usage. There may be some con-
flict in trying to keep the consistency between MARTE non-functional annota-
tions embedded in stereotype attributes (e.g., performance analysis stereotypes),
with other SysML specifications such as block quantity value annotations or
block constraint parameters.

Implementation Issues. The above combined cases may result in different combina-
tion issues from a tool implementation viewpoint. A supporting toolset that accompa-
nies UML profiles is, strictly speaking, not a part of the language problem. However,
the utility of a profile combination is directly related to the maturity of the supporting
tools. We identify the following scenarios in combining MARTE and SysML profiles
in modelling tools:

1) The simplest solution is to apply the profiles (i.e., the full profile definition) or
sub-profiles (i.e., sub-packages stereotyped as profiles) where needed within a
model. For example, a SysML user could specify that it requires the full Time
Modeling package of MARTE. UML tools can manage this case because of the
modularity defined in MARTE (organized in "extension units") and the UML’s
ability to select only those profile packages that are of direct interest.

2) While one may likely use some concepts of a profile or sub-profile, designers
may not want to include the full profile or sub-profile package in their models.
For instance, MARTE profile users may want to gain access to SysML concepts
of block, but they may prefer to use the MARTE constructs for flows. UML
does not allow for applying single stereotypes (contained in a profile) into a
model. What is needed is a decoupling/merging mechanism to compose profile
concepts and to make it available for profile users. Managing semantic compati-
bility is a requirement here.

In general, a hypothetical MARTE-SysML modelling tool should allow for filtering
appropriate information according to specific users. Some engineering disciplines
may be satisfied with a high-level description (e.g., blocks-and-flows description),
software developers may want detailed behaviour specifications, while analysis ex-
perts may require information of non-functional properties. This aspect is more rele-
vant when more than one stereotype is applied to a single UML model element. For
instance, one may consider a SysML Block, as a specific hardware resource by anno-
tating it with the appropriate MARTE stereotype. However, it is considered as a “re-
source” from a software viewpoint, but not from an electronic viewpoint. This needs a
suitable presentation mechanism to show the right stereotype to various stakeholders.

4.2 Combination Clues

Defining a modelling framework that combines SysML and MARTE requires a sys-
tematic comparison of the two. We consider that at least the following aspects should
be assessed in such work:

1. Conceptual Domain Coverage. Beyond syntactical aspects, it is important to be-
gin by assessing both profiles from a conceptual viewpoint. The intent is to

www.manaraa.com

110 H. Espinoza et al.

reach an overall understanding of these profiles and determine what application
domains are best covered by each. A good starting point is using the conceptual
domain models underlying the UML profiles. Conceptual domain models are
created as free as possible from considerations related to specific solution tech-
nologies so as to not embody any premature decisions that may hamper later
language use. Currently, the MARTE specification provides a conceptual do-
main model in the form of a metamodel with a textual description. On the other
hand, SysML directly defined UML stereotypes extending the UML metamodel.
Although a conceptual description is provided, a metamodel would significantly
help on identifying/comparing conceptualization entities of the targeted domain.

2. Semantic/Syntactic Overlapping. The evaluation of related points between both
profiles should be clearly identified by defining overlapping semantics (concep-
tual coverage), abstract syntax (extended UML constructs), and concrete syntax
(symbols and terminology). The intent is to determine which aspects of both
profiles can be consistently aligned and/or selected to consistently use both pro-
files. Overlapping aspects must be assessed in the light of one of the language
use cases, (c) or (d), identified in Section 3.1. While case (d) needs revisiting the
notion of views and viewpoints in the context of UML profiles (see Section 2.1),
case (c) requires a more careful treatment of semantic consistency.

3. Usability/Pragmatics. Usability issues are concerned with such concepts as ease
of use, productivity, and user satisfaction. Once the overlapping concepts are
identified and before deciding which profile features to adopt in a given model-
ing framework, we should identify the effectiveness of different symbols or
stereotype names for model understandability, as well as the number of steps
needed to accomplish a modeling goal. Of course that may depend on a tools’
maturity. However, syntactical design choices can help avoid complicated ways
of performing modeling steps or features which invite mistakes.

4. Expressiveness Limitations. One fundamental requirement that should drive a
useful comparison is completeness and lack of model expressiveness. The
evaluation of missing aspects needs to be objective by clearly identifying
whether it implies a conceptual, semantic, or attributes insufficiency. This raises
the problems of improving and extending both profiles, which is an important
goal of our research.

5. Abstraction/Refinement Levels. One fundamental difference between SysML and
MARTE relates to their ontological considerations. For example, while SysML
does not consider any "functional" classification of structural elements (only the
generic concept of Block exists), MARTE goes deeper by providing a detailed
taxonomy of application and resource structural elements. Using abstract or con-
crete language concepts will depend on the phase of development, and the kind
of model processing (simulation, verification, etc.) required at each level.

5 Related Work

The academic and industrial communities have recently begun to investigate the com-
plementary use of SysML and MARTE to support model-based development of em-
bedded systems.

www.manaraa.com

 Challenges in Combining SysML and MARTE for Model-Based Design 111

Among current projects in the embedded systems domain, MeMVaTEx [1] defines
a model-based methodology for modelling, validating, and tracing system require-
ments. It relies on SysML for requirements modelling and on MARTE for modelling
timing aspects. Since these aspects are practically independent, their combination is
handled methodologically, by providing consistent rules on when and where to apply
concepts of the individual profiles. Another project combining these two profiles is
INTERESTED [11], which attempts to create an interoperable tool-chain for en-
hanced rapid design and prototyping of embedded systems. This work aims at a more
extensive use of SysML and MARTE. While the first profile serves to describe the
high-level architecture organized around functional blocks, the second one provides
the standard annotations to enable timing analysis. However, the methodological rules
to guide the combined use of both profiles have yet to be established.

Two additional projects were recently started with the objective of adopting
SysML and MARTE in the hardware/software co-design field. One of these, the
SATURN project [19], proposes to bridge the gap between SysML/MARTE model-
ling and tools for architecture exploration, simulation and synthesis (in Sys-
temC/VHDL for hardware and C/C++ for embedded software). The main strategy is
to adopt most of the constructs of SysML and to integrate MARTE for adding the
formal semantics of different models of computation and thus enable system verifica-
tion. The second project, Lambda [14], intends to reconcile a number of related stan-
dards, including SysML, MARTE, AADL, and IP-XACT, to develop a library of
broadly used software and hardware platforms.

At the other end of the spectrum, there is very little research literature discussing
integrated approaches for system and software modelling based on UML. An example
is [10], where the authors evaluate how UML and SysML could be consistently used
for both system and software modelling. Perhaps, the main contribution of this work
is a mapping between SysML and UML concepts and the identification of the applica-
tion domains associated with each concept. Unlike this work, we attempt to provide a
more rigorous comparison of system and software modelling concerns, and addition-
ally, enrich expressiveness with MARTE features.

With regard to the combination of profiles at tooling level, the authors in [4] intro-
duce a packaging unit called MDATC (which stands for Model-Driven Architecture
Tool Component) that serves to collect metamodels and/or profiles, know-how, and
required resources in order to support domain-specific activities. Thus, by using
MDATC, modelling rules and constraints in the use of multiple profiles can be repre-
sented and exchanged in a standard format.

We end this section by highlighting the general problem of composition of lan-
guages or profiles. For instance, an aspect oriented approach supporting metamodel
composition is proposed in [8]. The authors focus on implementing composition
mechanisms for matching and merging model elements that crosscut the dominant
structure described in a primary model. The composition directives are implemented
in Kermeta, an open-source metamodelling language. Even if language composition
between different metamodels is certainly a more difficult problem than combining
stereotypes extending the same metamodel, especial care must be exercised. Our
study can be inserted in this lively context and viewed as a modest contribution in
composition of profiles, with special focus on SysML and MARTE, although in gen-
eral fragmentation problem is left as an open problem.

www.manaraa.com

112 H. Espinoza et al.

6 Conclusions

Because of the varying nature of the disciplines involved in embedded system design,
it is clear that a single modelling language, such as for example UML, may not be
suitable for all aspects. We believe that the UML profile mechanism is well suited to
create domain-specific languages, by providing a common semantic and syntactic
foundation while also permitting reuse of the underlying modelling tools. Currently,
there are an important number of profiles that may make their usage cumbersome, as
they are often created mutually inconsistent and overlapping. In this paper we pre-
sented some integration strategies for combining the SysML and MARTE profiles.
Both provide essential ingredients to model embedded systems. Our intent is to offer
a better understanding of their conceptual domains, and to help in using both profiles
in a single model by avoiding semantic and syntactical mismatches.

We presented some typical scenarios in which their combined usage is of relevant
added value in the embedded systems domain. In general, using modelling constructs
from one or the other profile depends on the expressive power a constructs should
provide to practitioners. In a simple usage scenario, the intent may be to aid under-
standing and to communicate about a system design. As such, it is not necessary to
define a detailed description or precise semantics, and basic evaluations of the archi-
tecture could be performed. In a more elaborated scenario, however, we may be inter-
ested on using powerful analysis tools, simulators, model checkers, product synthesis
tools, and the like. In this case, the necessary levels of specification detail and seman-
tic precision are much higher. While both forms of specification have merit, their us-
age will be driven by the specific needs of a particular development process and its
phases through the system lifecycle.

Our future work consists in providing a detailed comparison of SysML and
MARTE’s semantic and syntax, providing pertinent examples on their combined us-
age, and suggesting some improvements regarding language mismatches.

Acknowledgments. The work presented here is partially carried out within the
System@tic competitiveness cluster projects Lambda and IMOFIS.

References

[1] Albinet, A., Begoc, S., Boulanger, J.-L., Casse, O., Dal, I., Dubois, H., Lakhal, F., Louar,
D., Peraldi-Frati, M.-A., Sorel, Y., Van., Q.-D.: The MeMVaTEx methodology: from re-
quirements to models in automotive application design. In: 4th European Congress ERTS
Embedded Real Time Software. Toulouse, France (January 2008)

[2] André, C.: Time Modeling in MARTE. In: FDL 2007 Forum on specification and Design
Languages, Barcelona, Spain (2007)

[3] Cancila, D., Passerone, R.: Functional and structural properties in the Model-Driven En-
gineering approach. In: ETFA 2008 (2008)

[4] Bendraou, R., Desfray, P., Gervais, M.-P., Muller, A.: MDA Tool Components: a pro-
posal for packaging know-how in model driven development. Software and System Mo-
deling 7, 329–343 (2008)

[5] Cuccuru, A., Gérard, S., Radermacher, A.: Meaningful Composite Structures - On the Se-
mantics of Ports in UML2. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301. Springer, Heidelberg (2008)

www.manaraa.com

 Challenges in Combining SysML and MARTE for Model-Based Design 113

[6] Emery, D., Hilliard, R.: Updating IEEE 1471: architecture frameworks and other topics.
In: Seventh Working IEEE/IFIP Conference on Software Architecture WICSA (2008)

[7] Espinoza, H., Servat, D., Gérard, S.: Leveraging Analysis-Aided Design Decision Kno-
wledge in UML-Based Development of Embedded Systems. In: SHARK at ICSE 2008,
Leipzig (May 2008)

[8] France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing Support for Model
Composition in Metamodels. In: Proceedings of EDOC 2007, Annapolis, USA (October
2007)

[9] Gray, J., Tolvanen, J.-P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-
Specific Modeling. In: CRC Handbook of Dynamic System Modeling. CRC Press, Boca
Raton (2007)

[10] Hause, M., Thom, F.: Building Bridges Between Systems and Software with SysML and
UML. In: INCOSE Intl. Symposium (June 2008)

[11] INTERESTED EU Project: Interoperable embedded systems Tool-chain for enhanced
rapid design, prototyping and code generation,

 http://www.interested-ip.eu/index.html
[12] Johnson, T., Jobe, J., Paredis, C., Burkhart, R.: Modeling Continuous System Dynamics

in SysML. In: Proceedings of the IMECE 2007 (November 2007)
[13] Lagarde, F., Espinoza, H., Terrier, F., André, C., Gérard, S.: Leveraging Patterns on Do-

main Models to Improve UML Profile Definition. In: Fiadeiro, J.L., Inverardi, P. (eds.)
FASE 2008. LNCS, vol. 4961, pp. 116–130. Springer, Heidelberg (2008)

[14] Lambda Project, Lambda Libraries for Applying Model Based Development Approaches,
Technical Annex (May 2008)

[15] Maier, M.: System and Software Architecture Reconciliation. Systems Engineering Jour-
nal, 146–159 (2006)

[16] OMG, Unified Modeling Language, UMLTM Superstructure, V2.1.2
[17] OMG, Systems Modeling Language SysMLTM, V1.0
[18] OMG, UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded sys-

tems, Beta 2
[19] SATURN Project: SysML bAsed modeling, architecTUre exploRation, simulation and

syNthesis for complex embedded systems, http://www.saturnsysml.eu
[20] Selic, B.: From Model-Driven Development to Model-Driven Engineering. In: Keynote

talk at ECRTS 2007 (July 2007)
[21] Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML. In:

ISORC 2007, pp. 2–9 (2007)
[22] Soares, M.S., Vrancken, J.L.M.: A Proposed Extension to the SysML Requirements dia-

gram. In: IASTED International Conference on Software Engineering, Austria (2008)
[23] Sifakis, J.: Embedded Systems - Challenges and Work Directions. In: Higashino, T. (ed.)

OPODIS 2004. LNCS, vol. 3544, pp. 184–185. Springer, Heidelberg (2005)

www.manaraa.com

Derivation and Refinement of
Textual Syntax for Models

Florian Heidenreich, Jendrik Johannes, Sven Karol,
Mirko Seifert, and Christian Wende

Institut für Software- und Multimediatechnik
Technische Universität Dresden

D-01062, Dresden, Germany
{florian.heidenreich,jendrik.johannes,sven.karol,

mirko.seifert,c.wende}@tu-dresden.de

Abstract. Textual Syntax (TS) as a form of model representation has
made its way to the Model-Driven Software Development community and
is considered a viable alternative to graphical representations. To support
the design and implementation of text editing facilities many concrete
syntax and model mapping tools have emerged. Despite the maturity
of these tools, users still spend considerable effort to specify syntaxes
and generate editors even for simple metamodels. To reduce this effort,
we propose to refine a specification that is automatically derived from a
given metamodel. We argue that defaults in a customisable setting enable
developers to quickly realise text-based editors for models. In particular
in settings where metamodels evolve, such a procedure is beneficial. To
evaluate this idea we present EMFText [1], an EMF/Eclipse integrated
tool for agile TS development. We show how default syntax can easily
be tailored and refined to obtain a custom text editor for EMF models
and demonstrate our approach by two examples.

1 Introduction

Formal languages are the basis for most activities in computer science (e.g., to
describe data or to specify behaviour). They consist of a syntax and a semantics,
where the former describes the layout of valid sentences and the latter assigns
meaning. Well designed languages usually have a syntax that can be easily un-
derstood and that supports the languages’ semantics.

For a long time, syntaxeswere textual, but during the last two decades graphical
representations have become very popular. In particular Model-Driven Software
Development has pushed the widespread use of graphical methods to represent
(i.e., to model) software. Both types of syntaxes have their pros and cons. Graph-
ical syntaxes are strong in showing relationships, quantities and provide the
opportunity to zoom, which is useful to obtain an overview of the presented
sentence. In contrast, textual syntaxes have a predefined reading order, which is
valuable if sentences are interpreted in sequential order. Furthermore, in model
environments that lack a central version controlled model repository textual rep-
resentations can be easily compared and merged. Thus, graphical and textual

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 114–129, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Derivation and Refinement of Textual Syntax for Models 115

syntax must not be considered alternatives, but rather complements. While each
one can perfectly serve one purpose it might be inadequate for another one.

Textual syntax can be either generic or custom. Again, both have their pros
and cons. Generic syntaxes are defined on the level of metamodelling languages.
Thus, they are either instantly available or can be derived automatically for
concrete modelling languages. Custom syntaxes need manual specification ef-
fort. The former are also often more verbose and do not reflect the semantics of
a language nicely, in contrast to the latter, which are more compact and use sym-
bols that ease reading. To exemplify the difference, consider the two definitions
of a UML Transition shown in Listing 1.1.

Listing 1.1. Two concrete syntaxes for a UML Transition

Clearly the customised syntax in Line 2 is easier to read, but also requires
additional specification effort. If users have metamodels for their languages and
want to use textual syntax for their models, the question is, how the benefits of
generic syntaxes (low effort) and those of customised syntaxes (easier readability,
reflection of semantics) can be combined. This paper presents an approach to
achieve this and therefore allows rapid and agile development of tooling for TS.
By deriving a default syntax, which can optionally be refined, our tool EMFText
aims to reduce the effort needed to develop tool support for TS. As we will
show in this paper, not only the initial specification of syntaxes, but also the
adaptation of syntaxes to evolving metamodels, can profit from the approach.
With this we follow a new direction in TS development, as opposed to previos
approaches which we discuss in Section 5, which decreases the effort of syntax
development in particular in the initial development phase.

The remainder of this paper is organised as follows: Section 2 describes how
models can be represented as text. In particular, we discuss the options that
exist both for deriving a default syntax as well as customising it later on. Sec-
tion 3 provides detailed information about EMFText—the tool that implements
our approach. Equipped with this, we present the concrete syntax definition for
two modelling languages in Section 4, revealing the strengths and drawbacks.
Section 5 compares the presented work with related approaches and Section 6
concludes this paper.

2 Approach

In this section, we first study how concepts used in metamodelling map to con-
cepts used in grammar engineering. Based on this knowledge, we explore how
default values for a concrete TS can be automatically derived for a concrete mod-
elling language (i.e., a concrete metamodel). Then we discuss how the derived TS
can be further refined and tailored if needed. As one example for the derivation of

www.manaraa.com

116 F. Heidenreich et al.

a) b)

Classi er

A ribute

superclasses

Terminal

SequenceChoiceReference

Containment
Reference

Non-containment
Reference

Produc on

type

type

Non-Terminal

1

2

3

4

5

1

2 3

4

Fig. 1. Concepts of modelling languages (a) and text languages (b)

default syntaxes, we will use the Human-Usable Textual Notation (HUTN) [2]—
which is one but not the only possible way of deriving an initial syntax1.

2.1 Mapping Modelling Concepts to Text Language Concepts

Before we can derive and refine a TS for a concrete modelling language, we must
recapitulate which concepts are available in textual syntaxes and how they re-
late to the concepts used in modelling languages. Typically, textual languages
are defined by context-free grammars and modelling languages are defined by
metamodels. Hence, a mapping between metamodelling and grammar engineer-
ing concepts must be established. We show these concepts side by side in Fig. 1.
In the following we first summarise the core concepts of metamodelling (based
on [3]) and of grammar engineering (based on [4,5]). Afterwards (Sect. 2.2), we
discuss the mappings between the concepts. This discussion is based on [6].

Models defined in modelling languages are composed of elements that in turn
consist of attribute values and other contained elements. In addition, cross-
references between elements can exist. Which elements are allowed is defined
in a metamodel through classifiers (1a). By defining containment references be-
tween classifiers, the possible containment relations are defined (2a). Which at-
tribute values can be defined for an element is declared by attributes in the
metamodel (3a). Classifiers are also connected through superclass relationships,
which expresses exchangeability (4a). Possible cross-references are defined by
non-containment references (5a).

Sentences written in a textual languages consist of a sequence of elements,
where an element is either represented by a single symbol (i.e., a set of con-
nected characters) or another nested sequence, which again consists of symbols
and possibly other nested sequences. The allowed parts of textual languages are
defined in a grammar through productions (1b). By referencing other productions
through non-terminals in a sequence, the possible nesting of elements is defined
(2b). The symbols that may appear in a sequence are defined by terminals (3b).
Choices of different non-terminals can be defined to express exchangeability (4b).

1 See Line 1 in Listing 1.1 for an example of HUTN syntax.

www.manaraa.com

Derivation and Refinement of Textual Syntax for Models 117

From these core concepts of both language engineering approaches, the follow-
ing mapping can be derived. (1a–1b) Element types are defined through classifiers
on the one side and by productions on the other. (2a–2b) The composition of
elements from others is expressed by containment references on the metamodel
side. Non-terminals that appear in a sequence express a similar relationship on
the grammar side. (3a–3b) Attribute values are also part of a model element
and can therefore be expressed by symbols. Consequently the attribute con-
cept is mapped to the terminal concept. (4a–4b) The superclass relationship
can be mapped to the alternative concept because both express exchangeability.
(5a–2b) For cross-references, there exists no direct correspondence in text. They
can however be mapped to symbols as well. In this case, the symbol would rep-
resent an identifier that identifies the element to be referenced.

2.2 Derivation and Refinement

After discussing how modelling languages can be mapped to textual syntaxes in
general, the question is, what this mapping looks like for concrete modelling lan-
guages. Our design objective for such a mapping is to enable rapid and compact
text syntax definition. Keeping this in mind, we want to automatically derive a
default text syntax and then allow the developer to refine the generated syntax
in an intuitive and incremental manner.

Deriving a default text syntax can be performed using a) the language’s meta-
model and b) assumptions based on standards and best-practices. Hence, these
are the two parameters for this derivation process. We will shortly see where
one or the other is used to obtain parts of the default syntax. Following the
argumentation from Sect. 2.1 the derivation of syntaxes can be studied starting
from the elements of modelling languages. For example, each metaclass must
be mapped to a production. Thus, we will examine what such concrete default
mappings can look like. Once an initial mapping is obtained, it can be refined.
Since the options for the design of the default mapping and the customisation
are similar, we will discuss both together for each modelling concept.

Classifiers define the types of model elements that can be used in a model.
A representation of model elements as text, must disambiguate which class an
element belongs to. The most basic way to do so is to use a distinct terminal
symbol (keyword) for each classifier. HUTN realises this idea and uses the names
of the classifiers from the metamodel as keywords. In subsequent customisation
steps these default keywords can be changed. If classifiers can be disambiguated
based on other properties of their text syntax, the keywords can be removed
during the refinement process.

A Containment of model elements is expressed by nesting sequences. This is
achieved using non-terminals in sequences. These define the children (elements
in containment references) of the element defined by the parent sequence. Since
the containment relation between metaclasses is fully defined by the metamodel
the default nesting can therefore be directly derived. As the tree structures of
the metamodel and the grammar must match, the nesting is dictated by the
containment relation. However, the order in which contained elements are given

www.manaraa.com

118 F. Heidenreich et al.

in TS can be refined. HUTN allows an arbitrary order, which can be restricted
by further customisation steps.

Attributes are typed properties of classifiers. Classifiers can have multiple at-
tributes. Consequently, the textual representation of an attribute must identify
both the attribute itself (e.g., using its name) and its value, as well as, the classi-
fier instance the attribute belongs to. A default approach to have this three things
available is to a) define attributes in the context of their classifier (e.g., directly
after the keyword), and b) state the name of the attribute in the text together
with its value. Thus, two terminals are sufficient to represent an attribute and
its value. HUTN adds a third one (a double colon) to ease reading for humans.
The default definition for the terminals used for attibute values can be obtained
using the type of the attribute. For primitive types this mapping is straightfor-
ward. Numbers are mapped to text using their arabic representation, boolean
values are true and false, strings are enclosed in double quotes and characters
are surrounded by single quotes. Refining this mapping can be done in different
ways. The tokens for the attribute names can be omitted if an order is defined
upon the set of attributes or if all attributes have distinct types. Values can be
mapped differently (e.g., boolean values can be represented as yes and no).

The Inheritance hierarchy of the metamodel defines that different types of el-
ements are allowed at certain positions. Consequently, Alternatives of sequences
are allowed at positions where different types of model elements (with a com-
mon supertype) may occur. The alternatives can be derived from the inheritance
hierarchy and can not be altered (without changing the metamodel).

Non-containment references connect model elements and establish a graph
structure. To represent such references in text, names (or identifiers) must be
used. To obtain unambiguous identifiers an attribute having some uniqueness
constraint (e.g., name or id) can be used. A default setting is thus to use the
values of such attributes to reference model elements. However, sometimes it is
not clear which attribute must be used or scoping rules apply. In this case the
handling of names must be refined. To do so, both the identification of elements
and the referencing rules (e.g., scoping) must be defined.

To summarise, a complete instance of a Classifier (i.e., a complete model
element with attributes and references) is represented by a Sequence of terminal
symbols (e.g., keywords and identifiers) and non-terminals. In the particular case
of HUTN, an initial sequence definition for a metaclass starts with a keyword
that equals the name of the metaclass name followed by terminal symbols and
names for the element’s attributes and references in an arbitrary order.

3 Overview of EMFText

To first derive and later refine a TS, developers require a tool that 1) performs
the derivation, 2) provides the facilities to refine the derived syntax, 3) supports
the evolution of the TS along with the metamodel it is based on and 4) gener-
ates the tooling to create and manipulate models using the TS. Existing TS tools
lack support for one or more of these requirements (see Sect. 5). Therefore, we

www.manaraa.com

Derivation and Refinement of Textual Syntax for Models 119

Ecore
Metamodel

CS
Speci ca on

EMFText Parser Generator

Resolvers EMFText
Resource

Printer Parser

derived from

input for

generates
Grammar

Fig. 2. Overview of Specified and Generated Artefacts

implemented EMFText that supports all the four functionalities in combination.
With EMFText we evaluate the theoretical analysis of Sect. 2 on different exam-
ples in Sect. 4. This section therefore introduces EMFText, and how it supports
the four requirements (cf. Fig. 2).

To provide the refinement capabilities discussed in Sect. 2.2, EMFText pro-
vides a specification language called CS. An initial CS definition is therefore the
result of the derivation performed by EMFText (upper left of Fig. 2). Conse-
quently, an initial CS is obtained without any effort (as we will see in Sect. 4).
In CS specifications, the syntax for model elements is defined using concepts
from the Extended Backus Naur Form (EBNF). This is, because these concepts
from grammar engineering are well-known and are therefore a practical tool for
manual refinements. For refinements that go beyond grammar engineering as
the mapping of identifiers to cross-references (Sect. 2.1), EMFText generates a
Java API. Here a specification of how identifiers are resolved to the respective
elements can be implemented (lower left of Fig. 2). Again, to minimise specifica-
tion effort, a default implementation is provided by EMFText, where identifiers
are resolved to elements of the correct type having the correct name or id.

When metamodels evolve over time, the syntax might become incomplete or
invalid. In the first case, the textual syntax is incrementally derived for new
metamodel elements and syntax of removed metamodel elements is deleted. De-
velopers do not need to spend time to adapt their syntaxes to the changes made
to metamodels in these cases. However, changes in existing metaclasses with a
refined textual syntax cannot automatically be merged into an existing CS spec-
ification. In such situations EMFText informs the developer of necessary syntax
refinements by carefully analysing the CS specification. This analysis process,
which also ensures correctness during refinement, checks that the CS definition
matches the metamodel, by checking that 1) each production (rule) corresponds
to a concrete metaclass, 2) that there is a rule for each concrete metaclass and
3) all references defined in the metamodel are present in the syntax. Since CS is
itself defined with Ecore and EMFText, all these checks are performed on a CS
model (i.e., an instance of the CS metamodel).

Technically, EMFText is implemented as a set of plug-ins for the Eclipse plat-
form [7], tightly integrated with the Eclipse Modelling Framework (EMF) [3].
In addition to the mentioned resolvers, several artefacts are generated by EMF-
Text based on a CS to provide runtime tooling (right side of Fig. 2). First, a

www.manaraa.com

120 F. Heidenreich et al.

parser is derived that can read text syntax conforming to the CS productions
and that creates a model. Second, the counterpart—a printer—that transforms
models to text is derived from the same specification. Third, an implementation
of the Resource interface of EMF is generated through which parser and printer
are plugged into EMF’s resource management (making them accessible to all
EMF-based modelling tools). For the parser generation, EMFText is generally
not bound to a specific technology (i.e., additional technologies can be plugged
in). However, currently we support only ANTLR [8]. We mention this, because
the concrete parsing approach used can influence the CS specification. There-
fore, the CS analysis mechanism described above can be enriched with checks
specific to the used parser technology. For instance, ANTLR cannot handle left
recursion. Thus, a mechanism for automatically resolving direct left recursive
rules was provided. Other left recursive rules are detected on the CS level and
users are encouraged to refactor their syntax definitions. If a different parser
generator is used, the detection of left recursive rules might become obsolete,
but other analysis might be needed to make sure the CS meets the criteria of
the respective parser generator.

4 Examples

The previous sections introduced the conceptual and technological foundations
for development of concrete syntax for modelling languages with EMFText.
Here, we exemplify development with EMFText by two well-established mod-
elling languages—feature models and UML state machines—and show how an
automatically derived TS can be tailored by several refinement steps. More ex-
amples can be found at [9].

4.1 Parsing and Printing of Concrete Syntax for Feature Models

Variability modelling is at the heart of product-line engineering [10]. One widely
used notation to express variability between different products in a product line
are feature models [11]. The feature metamodel depicted in Fig. 3 was taken from
the FeatureMapper [12], a tool for mapping features to models. A central require-
ment for the development of the FeatureMapper was its compatibility with dif-
ferent existing tools. Thus, it uses a simple and flexible abstraction as feature
metamodel which covers a broad range of existing feature model derivatives.

Feature models describe hierarchical tree structures between features and
groups of features. These models are usually created using a diagrammatic nota-
tion, but as these models can grow for large product lines, an alternative textual
representation seems to be beneficial. Hence, providing adequate means for both
parsing and printing nested language elements are requirements for our concrete
syntax specification.

Generating a Default Concrete Syntax. The starting point in the devel-
opment of a TS for feature models is the concrete syntax specification language
CS of EMFText. As discussed in Section 3, CS specifications are tightly coupled

www.manaraa.com

Derivation and Refinement of Textual Syntax for Models 121

FeatureModel
name

getAllFeatures
getMandatoryFeatures

Feature
name
minCardinality
maxCardinality

isMandatory

Group
minCardinality
maxCardinality

Constraint
language
expression

constraints

0..* root

0..1

children
0..*

groups

0..*

childFeatures

1..*

Fig. 3. Metamodel for Feature Models

to one ore more EMF-based metamodels whose structure implicitly defines a
grammar skeleton. For every non-abstract metaclass a production rule can be
specified. Hence, a production’s left-hand side does not only correspond to a
non-terminal in a context-free grammar but also to a metamodel element with
the same name. Elements on the right-hand side of the production are mapped
to features (i.e., attributes or references) of the metaclass. To kick-start the de-
velopment of a new concrete syntax, EMFText generates a default syntax for
every non abstract metaclass based on the conventions introduced by the HUTN
standard. HUTN aims at providing a generic, human-readable textual syntax for
all kinds of MOF-based metamodels. For this purpose, it derives the syntactical
representations of model elements from the properties and relationships of the
corresponding metaclass.

An example using the specified syntax for the initialisation of a concrete Fea-
ture with the name “SimpleFeature” is shown in Listing 1.2. Every Feature dec-
laration starts with the keyword “Feature”. Encapsulated in curly braces initial-
isations for all properties and references of the Feature in arbitrary order can be
given. Every single property initialisation is preluded by a keyword correspond-
ing to the name of the property and a colon.

Listing 1.2. Feature declaration using the HUTN syntax

Concrete Syntax Tailoring. We argue that HUTN is not acceptable for a
broad audience since it neither provides syntax tailored to a language’s ap-
plication domain nor reflects language-specific semantics. Thus, we propose an
optional but recommended tailoring of the generated grammar productions to
construct a more usable syntax. The code listing in Fig. 4 compares the initially
generated HUTN-based syntax specification with the adapted feature model syn-
tax after tailoring. Lines that have not changed during syntax tailoring span the
full width of the listing. Differing lines are shown side by side.

Line 1 assigns a name to the concrete syntax, which can later be used as the
file name extension for model instances (here featuremodel), refers to a Ecore
metamodel registered in the system under the given URI, and defines which
metaclass is used as the root element of a model and the start symbol for the
parser.

www.manaraa.com

122 F. Heidenreich et al.

Fig. 4. CS specification for Feature Models

The rules section (Lines 2–19) contains one production rule for each concrete
metaclass. On the right-hand side of each rule we find 1. containment references
(e.g., childFeatures in Line 15) that define the positions of nestings, 2. at-
tributes (e.g., name in Line 6) that define the position of attribute values, and
3. keywords (e.g., ”FeatureModel” in Line 3) that are pure concrete syntax and
have no counterpart in the metaclass.

For attributes, which in contrast to references are followed by square brackets,
the allowed symbols as well as the mapping from such a symbol to a value in
the model can be customised. The first can be performed by using predefined
(e.g., INTEGER for minCardinality in Line 9) or custom defined token types
(can be defined with regular expressions in an extra section). A standard type
that allows a sequence of all letters and numbers is used by default if nothing
is specified (e.g., name in Line 6). The mapping can be adjusted by specifying
a prefix and a suffix instead of a token type (e.g., ” and ” for name in Line 4).
This causes EMFText to remove the prefix and suffix during parsing and to add
them during printing such that they never occur in the model.

The comparison of the generated and the tailored syntax shows that many
parts of the generated specification were reused or only slightly changed. In
some productions unneeded keywords were deleted, a few productions were
changed more invasively. In summary, the automatically generated syntax based
on HUTN provided guidance for refinement and tailoring of the syntax specifi-
cation.

From the tailored CS specification, EMFText derives a context-free gram-
mar which is exported as an ANTLR grammar specification. In accordance to
the inheritance structure in the metamodel alternatives are derived to express
the interchangeability of a type’s subtypes. The ANTLR specification is also
annotated with semantic actions to instantiate the model-representation for the

www.manaraa.com

Derivation and Refinement of Textual Syntax for Models 123

Feature
name
minCardinality
maxCardinality

isMandatory

Attribute
name
type
valueattributes

0..*

Fig. 5. Extension of Metamodel for Feature Models

parsed expressions. Finally the ANTLR tooling is used to generate the imple-
mentation of the lexer and parser. The LOC-ratio between a CS-Specification
and the resulting ANTLR grammar is about 1 : 10.

As a second implementation artefact, a pretty printer is generated from the
syntax specification. This printer transforms a given model to its textual repre-
sentation. Often special layout conventions which do not interfere with language
syntax and semantics are used to provide a more readable and comprehensive
syntax. Two constructs can be used in CS specifications to incorporate these
layout conventions. First, the LineBreak element (!<n>) causes a line break
during printing and an indentation in the next line to a level of <n>. Seconds,
the Whitespace elements �<n>) inserts <n> whitespaces during printing. Using
these constructs is optional.

Evolving the Concrete Syntax. During the development of the FeatureMap-
per we faced several situations where the feature metamodel had to be adapted.
Such an evolution is a common issue in language development. However changes
in a languages metamodel necessitate the co-adaptation of its textual syntax. A
concrete example for the feature metamodel was the introduction of Attributes
for Features (cf. Fig. 5).

To adapt the tailored textual syntax for feature models in accordance, the CS
specification is automatically extended by EMFText with an additional HUTN-
based syntax rule for Attributes. In addition, the syntax rule in Line 3–6 of
Figure 4 has to be extended to include Attributes in Features. We decided not
to automate the inclusion of a corresponding containment reference, since the
rule was already tailored. Instead, EMFText adds a warning to the CS specifica-
tion to inform the developer of the necessary syntax refinement. This exemplifies
how derivation and stepwise refinement helps the co-adaptation of TS for evolv-
ing languages.

4.2 Resolving References in UML State Machines

Our second example defines a textual syntax for UML State Machines. It uses
on an existing UML metamodel implementation that can be found at [13]. List-
ing 1.3 specifies a text syntax for state machines and Fig. 6 shows an exemplary
state machine opened in the EMF text editor. Note that the metamodel defines
Vertex as a superclass of State, FinalState and the initial state (represented
as Pseudostate if kind initial). Thus, their productions can be alternatively used
for the non-terminal subvertex in Line 5. Since the syntax defined in Listing 1.3

www.manaraa.com

124 F. Heidenreich et al.

Listing 1.3. Concrete syntax for UML state machines

concentrates on state machines, only the name of an Activity (Line 14) can be
specified (and no further details).

In contrast to the metamodel for feature models—which defined a strict tree
structure, by only utilising containment references (represented by filled dia-
monds in Fig. 3)—the UML metamodel also utilises non-containment references.
Non-containment references are used when an element should point to an element
that is defined elsewhere.

In a CS specification, terminals can be defined for non-containment references
in the same way they are defined for attributes. A token parsed for a terminal
represents the name of the referenced element. These names have to be resolved
to the actual elements. In the UML state machine syntax, the non-containment
references source and target of Transition (Listing 1.3, Line 11) are used.

Fig. 6. A UML state machine edited using it’s concrete syntax in the EMFText editor

www.manaraa.com

Derivation and Refinement of Textual Syntax for Models 125

Default Reference Resolving. EMFText provides a default algorithm to
resolve references. It uses type information provided by the metamodel to find
candidates in the parse tree (e.g., the target of a Transition must be a State).
Further, it compares the name of each candidate with the terminal representing
the reference to find a match. For that the candidates need to provide a name
attribute. For every match found, the terminal is replaced with a direct reference
to the found element (a State in this example). During pretty printing, the
references are de-resolved. That is, the referenced object is replaced by a terminal
constructed from the name attribute.

Tailoring Reference Resolving. By default, a name attribute is expected to
identify the referenced element unambiguously. For models defined in a large
language like UML, this convention does not always apply. For instance, the
doActivity containment reference of State is of type Behaviour (Listing 1.3,
Line 10). Activity and State are two subclasses of Behaviour. Thus, the UML
metamodel for state machines allows to specify the behaviour of a state by em-
bedding a subordinated state machine. In the state machine in Figure 6 for
example, there are two States named start (Lines 2 and 7). UML specific scop-
ing rules apply for the visibility of States to avoid name clashes between nested
machines. Naturally, the default resolving does not know these rules and there-
fore requires customisation.

For this purpose, EMFText provides the means to flexibly adapt the se-
mantics for matching a name with potential reference candidates. For every
non-containment reference a ReferenceResolver with two template methods,
doResolve() for resolving and doDeResolve() for de-resolving, is generated. By
default, the methods call their super implementation which implements the de-
fault reference resolving behaviour defined above. Hence, a developer can extend
or override the default behaviour in this methods. In successive generation steps,
the already generated and adapted resolvers are not overwritten.

In the case of our simplified UML state machines two references need to
be resolved. Thus, two resolvers: TransitionSourceReferenceResolver and
TransitionTargetReferenceResolver are generated by EMFText. Both can
be implemented in a uniform manner. Listing 1.4 shows the implementation of
the doResolve() method for the latter. Every ReferenceResolver extends the
generic type AbstractReferenceResolver<T> which gets bound with the type
the resolver is meant to resolve (in this case Transition). The parameters for
doResolve() include the name to be resolved, the container of the unresolved
reference (in this case Transition), the boolean parameter resolveFuzzy, and
a ResolveResult into which results of the resolution as well as error or warning
messages can be placed. In Lines 5–15 only Vertices that are defined within
the same Region as the current Transition are considered. This realises the
scoping.

If the resolveFuzzy flag is turned on, the proxy resolver is asked for all el-
ements that might match the given name. This is used by the text editor to
collect suggestions for code completion. Figure 6 shows the completion propos-
als for transitions starting with “st”. Fuzzy resolution usually differs only slightly

www.manaraa.com

126 F. Heidenreich et al.

Listing 1.4. TransitionTargetReferenceResolver implementation

from exact resolution. In the example (Listing 1.4) only equals() (Line 11) was
exchanged for startsWith() (Line 7). If a developer does not care about fuzzy
resolution and code completion, the flag can simply be ignored. The default
resolvers, however, do implement fuzzy resolution. Thus, code completion is pro-
vided out of the box for all cases were the default resolution is not overridden.
For de-resolving the default implementation can be kept here. If defined anyway,
the code would consist of a statement that reads the name attribute of a given
State and returns it.

Tailoring Token Resolving. EMFText also supports to tailor the mapping
of tokens (i.e., strings) to attribute values in the model. For instance, an input
string valued yes (no) can be converted to the boolean value true (false).
As this is a bi-directional mapping (from tokens to attribute values and vice
versa), we call the two complementary processes resolving and de-resolving. For
each token type, a TokenResolver is generated in which additional conversion
rules can be implemented. Note that this is only needed for special mappings.
Common conversions (e.g., for numbers) are already available.

5 Related Work

As discussed in [14], both generic and custom textual syntax can be benefi-
cial for different application scenarios. Consequently, a variety of different TS
tools and approaches exist. Some provide TS based on metamodelling languages
(e.g., [14]), while others are explicitly designed for the specification of custom
syntaxes. Goldschmidt et al. [15] presented a comprehensive overview of existing
approaches and classified them within a multi-faceted classification schema.

www.manaraa.com

Derivation and Refinement of Textual Syntax for Models 127

In contrast to existing approaches, which either focus on one type of syntax
or the other, our approach and the presented implementation (EMFText), was
designed with the combined focus on refinement, derivation and evolution. Thus,
it combines the strengths of both types of syntaxes. Presenting the differences
between EMFText and all other approaches in detail is beyond the scope of
this paper. Nonetheless, we will compare EMFText according to the classifica-
tion in [15] with determined tools that share most of EMFText’s concepts and
architectural decisions and are thus most related to our work.

Rose et al. [14] presented an implementation of the generic syntax HUTN. The
problems adressed by this implementation (rapidly changing metamodels) can
be countered with EMFText as well. The tooling generated from a HUTN syntax
specification that can be automatically derived by EMFText is very similar to
the one provided by [14]. However, we allow users to refine this syntax where
appropriate, which is not possible with a pure HUTN implementation. Further-
more, we can automatically generate syntax for new meta classes, keeping the
customised syntax for existing ones.

The definition of customised syntax is supported by variety of tools. To our
knowledge none of these tools provides support to either derive, refine or evolve
syntax definitions. However, there is more differences we want to mention here.

Similar to EMFText, TCS [16] has a tight coupling between the mapping
definition and the metamodel, which facilitates the definition of a syntax. It
provides a generic editor for registered syntaxes, including syntax colouring,
error marking, and navigation to underlying model elements. However, the latter
comes at the price of a mandatory base class for all metamodel elements handled
by the TCS editor. This is a limitation compared to EMFText’s implementation
which stores information regarding column and line numbering externally.

Sintaks [17] is built upon the Kermeta metamodelling facility and uses a con-
crete syntax metamodel to generate transformations between text and models.
In contrast to EMFText the mapping between syntax rules and metamodel ele-
ments is explicit. The concrete syntax has to be specified via an EMF tree-based
editor, which is not as convenient as using our specification language CS.

TEF [18] uses an interpretative approach (in contrast to the generative ap-
proach used in EMFText). Additionally, each rule needs to be associated ex-
plicitly with classes and properties of the metamodel using metamodel bindings.
This differs from the implicit mappings used in EMFText which facilitates much
shorter mapping descriptions. TEF supports background parsing and a Model
View Controller (MVC) update strategy.

Monticore [19] supports an integrated specification of concrete and abstract
syntax. It provides similar editing features as EMFText. Because of its integrated
approach, Monticore is well suited to define a metamodel and an editor for a
given textual language. This is a clear difference to our approach which targets
to easily derive and refine concrete textual syntax for existing metamodels.

XText [20] is tightly integrated with EMF and is based on ANTLR. As Mon-
ticore, XText provides an integrated specification language and similar editing

www.manaraa.com

128 F. Heidenreich et al.

features as EMFText. However, neither it can be used to define more than one
syntax per metamodel nor it allows to compose syntax for existing metamodels.

6 Conclusion

In this paper we presented a novel approach for defining textual concrete syntax
for modelling languages based on derivation and refinement. We introduced the
conceptual foundation for that approach and presented its implementation in
the tool EMFText. Finally, we showed usage and applicability of approach and
tool on different examples. EMFText allowed us to quickly define several text
syntax for two modelling languages. The possibility to start with a generated
default syntax but having all the customisation options turned out to be very
helpful—in particular for first-time users.

In the future, we plan to extend our text editor and investigate further usages
of the concrete text syntax. The tight integration with EMF and Eclipse can be
extended to connect to other functionality which profits from textual represen-
tations, like diff and merge in version control. We also plan to improve EMFText
to support a more declarative specification language for name analysis. The lan-
guage will provide adequate support to declare different namespaces and scoping
rules.

Currently, our tool implementation relies on ANTLR to generate parsers.
However this imposes some restrictions: As a recursive descent LL(*) parser
generator it does not support general left recursive grammars [4]. Furthermore
ANTLR parsers use an extra scanner component to convert input character
streams into token streams which may cause conflicts when composing syntax
definitions with intersecting token definitions. To improve EMFText in these
directions we plan to support alternative backends such that parser generators
can be exchanged accordingly. The effort of transforming left recursive grammars
into right recursive ones can then be avoided by switching to a tool that can
handle left recursive grammars, for example a LR based parser generator [4].
Moreover, a scannerless parsing approach can be applied to prevent conflicts
between token definitions [21].

Furthermore, we will define and analyse TS for more languages to find pos-
sible improvements to our approach. One direction here is to utilise EMFText
for type-safe code generation—using model-to-model transformations and EMF-
Text’s ability to print models into text. Another, yet related, idea is to extend
metamodels to obtain type safe template languages. We have done work into this
direction in [22]. The question here is how a TS can be automatically extended
along with a metamodel.

Acknowledgement

This research has been co-funded by the European Commission within the 6th Frame-
work Programme project Modelplex #034081, by the German Research Foundation
within the project HyperAdapt and by the German Ministry of Education and Research
within the projects feasiPLe and SuReal.

www.manaraa.com

Derivation and Refinement of Textual Syntax for Models 129

References

1. TU Dresden: Software Technology Group: EMFText (2008), http://emftext.org
2. Object Management Group: Human Usable Textual Notation (HUTN) Specifica-

tion. Final Adopted Specification ptc/02-12-01 (2002)
3. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-

work, 2nd edn. Pearson Education, London (2008)
4. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers – Principles, Techniques, and Tools.

Addison-Wesley, Reading (1986)
5. Meyer, B.: Introduction to the Theory of Programming Languages. Prentice Hall,

Englewood Cliffs (1990)
6. Kleppe, A.: Software Language Engineering. Pearson Education, London (2009)
7. The Eclipse Foundation: Eclipse Platform (2008), http://www.eclipse.org
8. Parr, T.: ANTLR — ANother Tool for Language Recognition — parser generator

(October 2008), http://www.antlr.org
9. TU Dresden: Software Technology Group: EMFText: Concrete Syntax Zoo (2008),

http://emftext.org/zoo
10. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-

dations, Principles, and Techniques. Springer, Heidelberg (2005)
11. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented Domain

Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Pittsburgh, PA (1990)

12. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping Features to
Models. In: Companion Proc. of ICSE 2008. ACM, New York (2008)

13. The Eclipse Foundation: EMF-based implementation of UML2 metamodel (2008),
http://www.eclipse.org/modeling/mdt/?project=uml2

14. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: Constructing Models with the
Human-Usable Textual Notation. In: Proc. of the MoDELS 2008, Toulouse, France,
pp. 249–263 (2008)

15. Goldschmidt, T., Becker, S., Uhl, A.: Classification of Concrete Textual Syntax
Mapping Approaches. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 169–184. Springer, Heidelberg (2008)

16. Jouault, F., Bézivin, J., Kurtev, I.: TCS: A DSL for the Specification of Textual Con-
creteSyntaxes inModelEngineering. In:Proc. ofGPCE2006.ACM,NewYork (2006)

17. Muller, P.A., Fleurey, F., Fondement, F., Hassenforder, M., Schneckenburger, R.,
Gérard, S., Jézéquel, J.M.: Model-Driven Analysis and Synthesis of Concrete Syn-
tax. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006.
LNCS, vol. 4199, pp. 98–110. Springer, Heidelberg (2006)

18. Scheidgen, M.: Textual Modelling Framework,
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/

19. Krahn, H., Rumpe, B., Völkel, S.: Efficient Editor Generation for Compositional
DSLs in Eclipse. In: Proc. of DSM 2007, Montreal, Quebec, Canada, Technical
Report TR-38, Jyväskylä University, Finland (2007)

20. Efftinge, S., Völter, M.: oAW xText: a framework for textual DSLs. In: Workshop
on Modeling Symposium at Eclipse Summit (2006)

21. Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation filters for scannerless gener-
alized lr parsers. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 143–158.
Springer, Heidelberg (2002)

22. Henriksson, J., Heidenreich, F., Johannes, J., Zschaler, S., Aßmann, U.: Extend-
ing Grammars and Metamodels for Reuse: The Reuseware Approach. IET Soft-
ware 2(3), 165–184 (2008)

http://emftext.org
http://www.eclipse.org
http://www.antlr.org
http://emftext.org/zoo
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/

www.manaraa.com

Uniform Random Generation
of Huge Metamodel Instances

Alix Mougenot�, Alexis Darrasse, Xavier Blanc, and Michèle Soria��

UPMC Paris Universitas, LIP6, France

Abstract. The size and the number of models is drastically increasing,
preventing organizations from fully exploiting Model Driven Engineering
benefits. Regarding this problem of scalability, some approaches claim to
provide mechanisms that are adapted to numerous and huge models. The
problem is that those approaches cannot be validated as it is not possible
to obtain numerous and huge models and then to stress test them.

In this paper, we face this problem by proposing a uniform generator
of huge models. Our approach is based on the Boltzmann method, whose
two main advantages are its linear complexity which makes it possible
to generate huge models, and its uniformity, which guarantees that the
generation has no bias.

1 Introduction

The size and the number of models is drastically increasing, preventing orga-
nizations from fully exploiting MDE (Model Driven Engineering) benefits [9].
Today systems are already composed of hundreds of models whose size is quite
often close to the thousand of model elements [13]. Regarding the evolution of
system complexity [4], one can easily observe that scalability is the most critical
of today’s (and tomorrow’s) challenges.

Approaches that address scalability issues claim to propose adapted mecha-
nisms that deal with numerous and huge models. However, they lack of a com-
plete large-scale validation. Indeed, as it is very difficult to obtain numerous and
huge models, it is not possible to really stress test them.

To face this problem, one possible approach is to gather numerous and huge
models into open repositories [8]. The idea is to ask large organizations to popu-
late the repositories by providing their larger models. This approach is however
not really convincing because, as said by the authors themselves, “one of the
main challenges was to find a good quantity of models”. Indeed, only 150 models
have been stored in the Moogle repository [8], which correspond to 80 thousands
model elements, and is therefore not sufficient to realize large-scale stress test.

In this paper, we propose another approach that consists in a uniform gener-
ator of huge models. Indeed, we argue that (1) the generator should be uniform1

� This work was partly funded by the french DGA.
�� work partially supported by ANR contract GAMMA, noBLAN07-2 195422.
1 By uniform we mean that for a finite class of objects C, any object of C is produced

with equal probability 1/card(C).

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 130–145, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Uniform Random Generation of Huge Metamodel Instances 131

in order to be used to validate existing approach without introducing any bias
and that (2) the generated models should be huge (millions of model elements)
in order to measure the scalability of the approaches.

As we will detail in section 5, most of existing approaches that provide gener-
ators of models aim at generating constrained models. Their objective is to find,
if possible, models that are consistent regarding a set of constraints. Those ap-
proaches are based on constraint solvers and hence have difficulties in generating
huge models.

Our approach is based on the Boltzmann method [2] whose two main advan-
tages are its linear complexity which makes it possible to generate huge models,
and its uniformity, which guarantees that the generation has no bias.

This article is structured as follows. Section 2 presents the Boltzmann method.
Section 3 presents our contribution that is to exploit the Boltzmann method to
generate huge models. Section 4 then presents our realization, then section 5
presents works related to the problem of models generation and section 6 presents
our conclusion.

2 Boltzmann Random Generation of Trees

Our approach is based on the random sampling of combinatorial structures,
within the frame of Boltzmann method, as introduced in [2] (see [11] for an up-
to-date review of the method’s developments and applications). The main feature
of this method is uniform generation with linear complexity, thus allowing for
generation of much larger objects than was possible before.

Most random generation methods deal with finite classes of objects, usually
objects with a given size, for example binary trees of size one thousand. In the
case of Boltzmann method, the notion of uniformity is extended to classes of
objects for which the cardinality is infinite, like binary trees of any size. The
Boltzmann method only guarantees uniformity for structures of the same size,
with the constraint that there is a finite number of elements having the same
size. For instance, the number of possible binary trees is infinite, but there is a
finite number of binary trees for a given size.

Data Structure
Specification

Parametrized
Generator

Parameters

Polynomial Equation
System

Uniform Linear
Generator

1 2

3

Fig. 1. Boltzmann Method Process Overview

www.manaraa.com

132 A. Mougenot et al.

Boltzmann method is generic and can be applied to data whose structure spec-
ifications are based on a rich set of constructors, such as disjoint union, Cartesian
product, sequences, sets, cycles, etc. It relies on three steps. The first one is the
transformation of a data structure specification (1) into a parameterized
generator. The second and third step aim at computing the right parameters for
this generator. Step two is the production of a polynomial equations system
(2) from the data structure specification and step three consists in work-
ing on the polynomial equations system with analytical techniques (these are
the domain of analytical combinatorics, described in [5]) in order to compute the
actual parameters of the parameterized generator, which will make the gen-
erator uniform with a linear complexity. By these means, a generator can be
automatically compiled from a data structure specification (see figure 1).

This section is continued with a presentation of Boltzmann generation of
trees. Section 2.1 presents the notion of tree specification which will be used for
specifying the structure of the trees to be generated. Section 2.2 describes how
to automatically derive the corresponding parametrized generator. Section 2.3
then presents how to compute the actual parameter for making the generator
uniform with a linear complexity. Finally, section 2.4 explains why the uniform
generator has a linear complexity.

2.1 Tree Specifications

In this paper we use the Boltzmann method to generate trees. A tree specification
in this context will be a context-free grammar with two terminals (Z and ε) and
three operators (Seq, | and ∗). Z represents one instancible element (either a leaf
or any node) whereas ε is the empty element. The unary operator (Seq) is used
to specify sequences of an arbitrary size k ≥ 0. The binary operators (|) and (∗)
are used to specify respectively union and product.

The size of a tree T , denoted by |T |, will be the number of Z it contains.
Remember that for a grammar to be admissible by the Boltzmann method, it
must only allow for a finite number of trees of a given size, therefore constructions
such as Seq(ε), which creates an infinity of zero-sized objects, are not allowed.
Figure 2 shows three classical examples of tree specifications. First, a binary tree
(T1) which is either a leaf (L1) or a node (N), with leaves being of one size unit
(Z) and nodes being of one size unit that aggregate two binary trees (Z ∗T1∗T1).
Then, one-two tree and a general tree specifications are also given as example.

2.2 General Generator Automatic Construction

In this section we present the transformation that inputs a tree structure speci-
fication and returns a corresponding parameterized generator. A parameterized
generator is a set of procedures that correspond to each non terminal of the
tree structure specification (by convention, we name genT() the procedure that
corresponds to the generation of the non terminal T). The parameterized gen-
erator can be used to generate any tree that conforms to the input structure
specification.

www.manaraa.com

Uniform Random Generation of Huge Metamodel Instances 133

Tree type A corresponding grammar
Binary trees T1 = L1 | N

L1 = Z
N = Z ∗ T1 ∗ T1

One-two trees T2 = L2 | U | B
L2 = Z
U = Z ∗ T2

B = Z ∗ T2 ∗ T2

General trees T3 = Z ∗ Seq(T3)

Fig. 2. Classical examples of tree specifications

When there is a choice point, for union or sequence in the case of tree specifica-
tions, the generator uses its parameters to determine either which element of the
union should be generated, and or the length of the sequence to generate. Each
choice point must respect a particular choice probability in order for the global
generator to be uniform. These probabilities are driven by a weight operator,
noted w, that will ensure that the generation is uniform. The actual parameters
of the generator are the weights of each non-terminal in the specification that,
if set correctly, will guarantee the uniformity of the generation and the weight
of the terminal Z that, if set correctly, will ensure the linear complexity.

The following rules are then used to build the generation procedures, in ad-
dition to each rule we give the corresponding weight operator equation for each
construction:

– A = B : This construct means that the element A is in fact specified by
B. Any generation of A is substituted by the generation of B. w(A) is a
generator parameter, and w(A) = w(B).

– B | C: with this construction, either B or C will be generated. The weights
of the elements are used here to control the probability to generate either
one or the other. The probability of generating B is w(B)/(w(B) + w(C)),
and the probability of generating C is symmetric. A pseudo-random number
can be used to determine which element should be generated with respect to
the given probability. The corresponding weight is w(B | C) = w(B)+w(C).

– Seq(B): this construction independently generates a sequence of B. First the
number k of components in the sequence is drawn, following a geometric law
(k = geom(w(B)) = � ln(random([0,1[))

ln(w(B)) �), and then k elements of type B are
independently generated and returned as a sequence. The weight of such a
construction is w(Seq(B)) = 1

1−w(B) .
– B ∗C: this construction independently generates both an element B and an

element C, and the weight is w(B ∗ C) = w(B) · w(C).
– Z: the Z element in the tree specification corresponds to one tree size unit,

which very often corresponds to one node. Wherever there is a Z in the
specification, a terminal element is generated. The generation of terminals
is not handled by the Boltzmann method, it therefore needs to be provided.

www.manaraa.com

134 A. Mougenot et al.

Binary trees: genT1() = if random() < w(Z)/w(T1)
then return genL1() else return genN()

genL1() = return Ext()
genN() = return Ext(GenT1(),GenT1())

One-two trees: genT2() = r := random;
if r < w(Z)/w(T2) then return genL2()
elsif r < w(U)/w(T2) then return genU()
else return genB()

genL2() = return Ext()
genU() = return Ext(genT2())
genB() = return Ext(genT2(),genT2())

General trees: genT3() = k := geom(w(T3)); res := [];
for i from 1 to k do res := genT3()::res done;
return Ext(res)

Fig. 3. The generation algorithms for the example grammars

The weight w(Z) is a special parameter of the generator given by the solver
(see details below).

– ε: ε is the empty element, thus nothing will be generated, and w(ε) = 1.

Figure 3 shows one generation algorithm for each specification given in fig-
ure 2. In this example we name Ext() the constructor of terminals which must
be provided by an external source. The explicit values of the weight will be given
in section 2.3.

For better understanding of the implementation of such generator, we detail
here the construction of the binary tree’s generator, the two other ones are given
as illustrations.

The specification of binary trees is T1 = L1 | N , L1 = Z, N = Z ∗T1∗T1. This
recursive specification states that a binary tree is either a leaf (L1) or a node (N)
aggregating two binary trees. The binary tree random generator (noted genT1)
will have to respect the | specification; the probability to generate a leaf must
be w(Z)/(w(L1) + w(N)) (note that as w(L1) + w(N) = w(T1), the probability
to generate a leaf is simplified as w(Z)/w(T1)). To generate elements with the
right probability we use a pseudo-random generator for real numbers in]0, 1],
if the value produced by the pseudo-random generator is smaller than the leaf
probability (w(Z)/w(T1)) a leaf will be produced, otherwise a node is produced
using the external binary tree node constructor that inputs two binary trees
generated using recursive calls.

Remark 1. If the tree specification has more than one equation, we obtain one
generator for each non-terminal, with possible calls to the other non-terminals
generators. We thus need to specify one non-terminal as the “root” of the gram-
mar, in order to provide an entry point for the generation.

www.manaraa.com

Uniform Random Generation of Huge Metamodel Instances 135

The goal of the second step of the Boltzmann method is then to compute the
actual parameters in order to make the generator uniform with a linear com-
plexity.

2.3 Boltzmann Method

In this section we present how to calculate the weights used by the generator.
Boltzmann method applies to the generation of structured objects, using the

powerful tool of generating functions. Given a class C of objects, each object γ
having a size denoted by |γ|, we denote by C(z) its generating function, which
is the series C(z) =

∑
γ∈C z|γ| =

∑
n cnzn, where cn is the number of objects of

size n in C. In Boltzmann method each object γ is generated with probability
z|γ|/C(z).

The symbolic method [5] provides a dictionary for translating structural con-
structions into operators on generating functions: concerning tree constructions,
the dictionary reduces to:

Z → z, ε → 1,
C = A | B → C(z) = A(z) + B(z),
C = A ∗ B → C(z) = A(z) · B(z),
C = Seq(A) → C(z) = 1

1−A(z) .

Thus in a tree specification, each line transforms into a corresponding gen-
erating function equation (which also corresponds to the weight relations from
section 2.2), and a system of specifications transforms into a polynomial system
of equations.

For computing weights as described in section 2.2, we need to solve such
systems of equations for a given value x of variable z: the weight of element Z is
set to x, and the weight of a non-terminal C is the value of series C(z) evaluated
at z = x. The resolution is analytically coherent for 0 ≤ x ≤ ρ, where ρ is a
special value, called the singularity of the system.

Solving polynomial systems of equations is a very complex problem in general,
but systems corresponding to specifications do have a structure that can be
exploited in the computations. In our implementation we use a combinatorial
newton method that gives a very efficient solver [12], that can also be used to
calculate an approximation of the singularity ρ.

In figure 4, we show the generating functions for the previously introduced
tree specifications and the calculated weights for each of these systems for z = ρ.

In each case, using the values of these functions at z = ρ, the Boltzmann
algorithms of 2.2 derive a linear time generator with the property of uniformity:
given a size n, two trees of that size have exactly the same probability of being
generated. These generators however have the particularity that the generated
trees are not all of size n, but have a random size, with a mean value depending
on parameter z. We show in section 2.4 how to deal with this aspect, using ρ as
the value for z.

www.manaraa.com

136 A. Mougenot et al.

Tree type Corresponding generating functions Weights
w(Z) = ρ = 1/2

Binary trees T1(z) = L1(z) + N(z) w(T1) = 1
L1(z) = z w(L1) = 1/2
N(z) = z · T1(z)2 w(N) = 1/2

w(Z) = ρ = 1/3
One-two trees T2(z) = L2(z) + U(z) + B(z) w(T2) = 1

L2(z) = z w(L2) = 1/3
U(z) = z · T2(z) w(U) = 1/3
B(z) = z · T2(z)2 w(B) = 1/3

w(Z) = ρ = 1/4
General trees T3(z) = z · 1

1−T3(z)
w(T3) = 1/2

Fig. 4. The generating functions and calculated weights of the example grammars

2.4 Complexity and Generation of Huge Trees

With Boltzmann method, the size of the generated trees is random, with a
distribution that depends on the specification and a mean value that goes from
0 to infinity when parameter x goes from 0 to ρ. More precisely the probability
for the result to be of size n depends on parameter x and on the singularity ρ,
which is attached to the system of equations corresponding to the specification:
for large n, this probability is proportional to n− 3

2 xnρ−n. Thus the closest is x
to the value of ρ, the biggest is the probability of generating large size trees.

As an illustration, in figure 5 we plot the probability of producing a tree of
size n in function of n, with different values of x: there are five different curves,
corresponding to x = 0.9ρ, x = 0.999ρ, x = 0.99999ρ, x = 0.9999999999ρ and
x = ρ. In the right part, the curves are plotted with both axes in logarithmic
scale, in order to show up the differences. It is quasi-impossible to obtain a tree of
size one hundred with a precision of 1/10 for x/ρ, whereas it is likely to produce
a tree of size ten million when ρ is approximated with a precision of 1/1010.

Boltzmann samplers are particularly efficient if we accept some variability
in the size of the generated structures: fixing a target size n and a margin of
error δ, generating a structure of size belonging to [(1 − δ)n, (1 + δ)n] can be
completed in mean time O(n) (whereas exact size average complexity can be up
to quadratic).

In [2], it is showed that in the case of tree sampling, linear time complexity can
be achieved by Boltzmann method by using either pointing or singular sampling.
For our implementation, we chose the second approach, consisting in taking ρ as
the value of x, and this leads to both issues of computing ρ and rejecting trees
of non admissible size. Indeed in the case of singular sampling, the mean size
of the generated structures is infinite. We will never generate an infinite object,
but there is however a non-trivial probability of generating objects of sizes that
we cannot handle. The solution to this problem is simple and consists in abort-
ing the generating process as soon as we pass the upper bound of our target size.

www.manaraa.com

Uniform Random Generation of Huge Metamodel Instances 137

0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

size

pr
ob

ab
ili

ty

1e+00 1e+03 1e+06 1e+09

1e
−1

7
1e

−1
3

1e
−0

9
1e

−0
5

1e
−0

1

size

pr
ob

ab
ili

ty
Fig. 5. Probability distribution of sizes for trees generated with Boltzmann method,
with a parameter x = 0.9ρ, 0.999ρ, 0.99999ρ, 0.9999999999ρ, and ρ. The solid color
bars show the range inside which the generators have a guaranteed linear complexity,
which in practice extends to the whole colored range. In the second plot, both axes are
in logarithmic scale.

As for the second point, the evaluation of ρ is non trivial and will not be detailed
in this paper; it uses a dichotomy heuristic and the Newton algorithm of [12].

3 Model Generation Based on Meta Model Specification

We present in this section a scalable, uniform, random model generation process.
This process can be used to generate very big models based on their metamodel
specification. It makes use of the uniform random trees generation previously
presented. We present here how to transform a metamodel specification into a
tree specification and how to complete the generated trees to obtain the final
instance.

3.1 Running Example

In figure 6 is presented a simple MOF/ECORE [10] metamodel inspired from
the classic ECLIPSE EMF[6] Library example. This metamodel will be used
throughout this paper to illustrate our approach. It contains four meta-classes:
Library, Book, Volume and Compilation where Volume and Compilation inherit
the Book abstract meta-class. This metamodel shows three containment rela-
tions, from Library to Book, fro Library to Writer and from Compilation to
Book, and one relation from book to writer.

3.2 From Metamodels to Tree Specification

Metamodels and tree specifications are not equivalent. The metamodel language
is far more expressive than tree specifications. We present here how to interpret

www.manaraa.com

138 A. Mougenot et al.

Fig. 6. Running example metamodel diagram

metamodel constructions into tree specification constructions. The transforma-
tion we propose is done in three steps where each step refines the output spec-
ification tree. Note that the model transformation we define here is not total,
some elements in the metamodel will not be translated into the corresponding
tree specification. Our approach only generates the core structure of the model.

Identification of base trees. The first step to build the random generator is
to identify parts of the metamodel that will correspond to the randomly gener-
ated tree. A metamodel is a directed graph that is used to specify other graphs.
We need to identify trees in the metamodel graph to be able to generate trees
that respect the metamodel specifications. The trees used by the random gen-
erator are identified thanks to the containment relationships in the metamodel.
The containment relationship offers two advantages, they allow to hierarchically
generate the model and are acyclic. For each containment relationship found
in the metamodel both source and target meta-classes are created in the tree
specification and are equal to Z, i.e. an element with one size unit. Abstract
meta-classes are created but are not equal to anything at this stage as they
should not be instantiated. Finally, each of the containment relationships adds
that source equals its value times the target. In the running example we iden-
tified three containment relationships. The result of the transformation on the
running example is this tree specification:

Library = Z ∗ Book ∗ Writer

Book = void

Writer = Z

Compilation = Z ∗ Book

Inheritance relations. The second step to obtain the tree specification is to
handle inheritance relations. The inheritance relation is interpreted as a logical

www.manaraa.com

Uniform Random Generation of Huge Metamodel Instances 139

or. If meta-class B inherits A, the generation of an instance of A can be replaced
by the generation of an instance of B. Therefore, are added to the specification
rules for each meta-class A that has daughter meta-class B the fact that A is
A∨B. If a new meta-class is encountered, it is equals Z. At the end of this stage
all tree specification entries must have a value, all abstract meta-classes that are
not inherited must be removed from the tree specification system as they can
not be instantiated.

In the running example, Compilation and Volume inherit Book. The resulting
tree specification is :

Library = Z ∗ Book ∗ Writer

Book = V olume | Compilation

Writer = Z

V olume = Z

Compilation = Z ∗ Book

Cardinalities. The third step makes sure the cardinalities constraints are re-
spected. To respect lower and upper bound cardinalities the target is multiplied
as many times as requested in the tree specification, if the cardinality of a re-
lation A to B is x..y then A is ∨y

i=xBi. If the upper-bound is * we use the
sequence concept, where Seq(B) denotes an arbitrary long B sequence, note
that a sequence may be empty. If the lower bound is 0, the empty element ε is
used.

If we apply the cardinality constraints to our tree specification, we obtain :

Library = Z ∗ Book2 ∗ Seq(Book) ∗ Writer ∗ Seq(Writer)
Book = V olume | Compilation

Writer = Z

V olume = Z

Compilation = Z ∗ Book2 ∗ Seq(Book)

Unadapted metamodels. At the end of the transformation, all meta-classes
in the metamodel should have a value in the tree specification. If it is not the
case, this meta-classes are not accessible, meaning that they can not be randomly
generated in a global uniform random generation process, i.e. the metamodel is
not suited for our random generation process.

At the end of the transformation, all meta-classes should be linked directly
or indirectly with the root of the metamodel. If it is not the case, the given
metamodel has more than one root, our random generation process can be used
with any of this roots, but only a subpart of the metamodel will be generated.

3.3 Model Final Structure Generation

The tree specification corresponding to the metamodel is used to generate the
skeleton of the instance generation as described in section 2, however the Boltz-

www.manaraa.com

140 A. Mougenot et al.

mann tree random generator only generates a model core. It needs a mechanism
to generate basic relations that are not containments in order to generate in-
stances of the metamodel. To our knowledge, there is no methodology to uni-
formly generate such structures and keep the overall generation process random
(Boltzmann model does not apply well to graphs). Therefore, any generation pro-
cess for the basic relations that respects the metamodel specification can be used
to complete the skeleton. For instance, in [3] is described as stage two and three
such a process. In our implementation on UML Class models we implemented a
generator that strictly satisfies the lower bound constraints.

4 Validation

In this section we present our implementation of the generator, as well as par-
ticularities of the random sampling that were verified in particle uses when gen-
erating UML 2.2 Class Models.

4.1 Implementation

We present in this section the application of the generation process to UML class
models. From the official UML 2.2 specification we extracted a simplified class
metamodel. The figure 7 presents the tree specification corresponding to this
metamodel. Note that the generation processed has been tweaked, the probabil-
ity to generate packages was reduced and the probability to generate operations,
properties, literal integers and parameters augmented. This manipulation is later
detailed in this section.

We implemented the generator as an Eclipse Plugin which is available online2.
The plugin can generate UML files containing the class model from a graphical
interface shown in figure 8.

We implemented a value generator for the names, literal values, visibility
kinds and direction kind in order to produce a valid model. The properties
value generation we implemented is constrained in order to only produce valid
models. We also implemented a generator for generalization and references that
randomly chose a valid target in the generated elements. However, the generation
of constrained values is not in the scope of this paper.

Even with a linear complexity in random calls, the actual generation process
may be long for big models. Indeed, the meta-classes instantiations and prop-
erties value generation is time consuming, in order to avoid the generation of
unused elements we propose to use a simulation. When a model of a particular
size is to be generated, the current random seed is saved, the algorithm to gen-
erate a random instance is run without any instantiation, and if the simulation
is successful (the size of the model is correct), the seed is reused to generate
the actual model, otherwise the simulation is run again. This optimization does
not change the theoretical complexity of the sampling but allows to gain a huge
amount of time. In our implementation on UML Class models, there is a factor

2 See http://meta.lip6.fr for more details.

www.manaraa.com

Uniform Random Generation of Huge Metamodel Instances 141

model = package

package = 0, 01Z ∗ Seq(packageableElement)

packageableElement = package | class | association

class = Z ∗ Seq(property) ∗ Seq(operation) ∗ Seq(generalization)

generalization = Z

property = 3Z ∗ (valueSpecification | ε)

association = Z

valueSpecification = literalBoolean | literalNull | literalInteger | literalString

literalBoolean = Z

literalNull = Z

literalInteger = 2Z

literalString = Z

operation = 2Z ∗ Seq(parameter)

parameter = 3Z ∗ (valueSpecification | ε)

Fig. 7. UML 2.2 based tree specification for class models

Fig. 8. snapshot of the class model generator

higher than 1000 between the simulation of a valid generation and the same
calculation with all meta-classes instantiations.

We present in figure 9 the performances of our prototype. This chart shows
that the time to obtain a seed that will produce a valid model (valid size) is very
short and its average is linear. However our implementation based on EMF [6] is
quite slow and can not reasonably produce models above a size of 250 000 model

www.manaraa.com

142 A. Mougenot et al.

Model size Average simulation time Building time
(10% margin)

100 6.50 ms 44.6 ms
1 000 11.2 ms 154 ms
10 000 91.1 ms 1.61 s
50 000 0.501 s 9.87 s
100 000 0.934 s 26.0 s
200 000 1.79 s 52.8 s
250 000 2.48 s 63.2 s
500 000 4.32 s not applicable

1 000 000 8.86 s not applicable

Fig. 9. Prototype’s performance chart ran on a MacBook Air

elements due to a huge memory consumption. Therefore we can not provide valid
building times for the size 500 000 and one million. It is important to note that
the time we provide for obtaining a valid seed is an average for one hundred
runs. As the complexity is an mean time complexity, the actual time spent to
find a valid seed can significantly vary.

4.2 Generating Instances of a Particular Size

The presented theory states that the mean time to generate a model of a par-
ticular size, within a reasonable margin, is linear. The probability to obtain a
model of the right size allows us to randomly generate models and only keep the
ones with a valid size. As the complexity to generate one model of the wanted
size is linear, the complexity to generate a fixed size sampling of uniform models
with a size in [n(1 − δ), n(1 + δ)] has a linear complexity too.

It has to be noted, however, that the Boltzmann sampler is very sensible to
the value of its parameter, particularly as it approaches its maximal value ρ.
Our method depends on taking a parameter equal to ρ, but as ρ can be any real
number between 0 and 1, it is not possible to calculate it exactly in most cases
and we will use an approximation. The effect of this, illustrated in figure 10,
is a “ceiling” in the maximal size attainable by the generator. It is therefore
important to make a very precise approximation of ρ to be able to generate very
large objects. In figure 10 is represented the distribution of class model sizes
generated using different approximations of ρ, it appears that the proportion of
big models is affected by the accuracy of ρ’s calculation. For instance no model
of a size greater than five hundred thousand model elements could be generated
with a value of ρ correct up to the seventh digit, but with a precision of fifteen
digits, ten million model element is possible to reach in linear time.

4.3 Influencing Generation Output

It is in our opinion very important to be able to characterize the probability
distribution of the generated structures, as it allows us to control a possible

www.manaraa.com

Uniform Random Generation of Huge Metamodel Instances 143

1e+00 1e+03 1e+06 1e+09

1e
−1

7
1e

−1
3

1e
−0

9
1e

−0
5

1e
−0

1

size

fre
qu

en
cy

1e+00 1e+03 1e+06 1e+09

1e
−1

7
1e

−1
3

1e
−0

9
1e

−0
5

1e
−0

1

size

fre
qu

en
cy

Fig. 10. Distribution of sizes of generated class models by a Boltzmann sampler with
a parameter of 0.9ρ, 0.999ρ, 0.99999ρ and ρ (ρ calculated with a 10−15 precision). The
left plot corresponds to a grammar without coefficients, while in the right the exact
grammar of figure 7 is used. Note that both axes are in logarithmic scale.

bias. However, the uniform distribution provided by the Boltzmann samplers
may not be the best fit to this needs. We might find, for example, that the
number of operations in classes in the random class models is not sufficient.
We thus need to add ponderations in our specification, in order to influence the
frequency of appearance of the different elements, in a way that allows us to
calculate the resulting bias.

The extension of the theory of Boltzmann sampling in this direction is work
in progress, but there are some elements that we can already use. We allow the
definition, for each non-terminal, of a coefficient with a default value of 1 that
will influence the frequency of the corresponding element. The influence of the
coefficient values to the frequencies is not trivial, as the different frequencies
depend on each other, so the good choice of coefficients is done for the moment
via trial and error. It is possible to calculate the frequencies given the values of
the coefficients, and the complexity of the generation process is not affected. In
figure 7 where the tree specification of simplified UML class diagrams is given,
the probabilities have been modified, the probability to generate packages was
reduced and the probability to generate operations, properties, literal integers
and parameters augmented in order to obtain more realistic class models.

5 Related Works

Alloy which is a lightweight specification language based on first-order relational
logic [7] can be used to generated models. Indeed, its main principle is to com-
pute all models of a fixed size and that correspond to a particular specification.
Then Alloy is able of extracting form this set of models the ones that are con-
sistent regarding to a set of specified constraints. Alloy is based on a SAT solver

www.manaraa.com

144 A. Mougenot et al.

(the SAT problem belongs to the NP-Hard class) and therefore is not able to
produce huge models.

In [3], is presented an algorithm that can generate instances of metamodels.
It is based on a transformation of the metamodel structure into a set of graph
specification rules. This set of rules is able to generate any skeleton of metamodel
instances, and can be coupled with constraint rules in order to respect specific
needs. The random process resides in the random election of generation rules.
The outputted models can be biased as the choosing of the rule is constrained
by the graph specification rule application formalism. Plus, this approach may
not scale, the applying of each graph rule has an exponential complexity as it
needs to find the existence of a subgraph in the already generated graph which
limits the efficiency of this tool (the general problem is NP-Hard).

In [1], a formalism is presented to generate random constrained models. The
approach consists in using mutations to derive, from a given instance, random
other alike instances. The approach is effective and can handle very huge models
since the mutation process is very effective. However, this approach is biased
by definition, it needs to input one instance of the model to generate others,
therefore the outputted models will have a lot of similarities.

6 Conclusion

In this paper we presented an adaptation of the Boltzmann random sampling
theory to metamodel instance generation. The resulting generator has three in-
teresting particularities.

First it is scalable, the complexity of the generating process is linear with the
size of the generated structures. And this size is controllable.

Then it outputs uniform samplings for a given size, the probability for any
structure of size n to be generated is the same.

And finally, it allows to experimentally change the form of outputted models
to meet with specific requirements.

However, metamodels usually come with a set of constraints to precise the
specification of its instances, in this paper we did not describe how to gener-
ate values for the properties of these instances, however our implementation on
class models successfully took this challenge in consideration. In the particular
purpose of generating models that satisfy important model constraints, the prop-
erty generation must be carefully controlled, and possibly a random generation
process may not be adapted. Further research in this direction must be done in
order to exploit the high performances of the random generation of metamodel
instances to constrained models.

References

1. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based
test generation for model transformations: an algorithm and a tool. In: 17th In-
ternational Symposium on Software Reliability Engineering, 2006. ISSRE 2006,
pp. 85–94 (2006)

www.manaraa.com

Uniform Random Generation of Huge Metamodel Instances 145

2. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the
random generation of combinatorial structures. Combinatorics, Probability and
Computing 13, 577–625 (2004)

3. Ehrig, K., Kuster, J., Taentzer, G., Winkelmann, J.: Generating instance models
from meta models. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 156–170. Springer, Heidelberg (2006)

4. Feiler, P., Gabriel, R., Goodenough, J., Linger, R., Longstaff, T., Kazman, R.,
Klein, M., Northrop, L., Schmidt, D., Sullivan, K., et al.: Ultra-large-scale sys-
tems: The software challenge of the future. Technical report, Software Engineering
Institute, Carnegie Mellon University (2006) ISBN 0-9786956-0-7

5. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

6. T. E. Fondation. EMF (Eclipse Modeling Framework),
http://www.eclipse.org/modeling/emf/

7. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

8. Lucrédio, D., de Mattos Fortes, R.P., Whittle, J.: Moogle: A model search engine.
In: Proceedings of Model Driven Engineering Languages and Systems, 11th Inter-
national Conference, MoDELS 2008, Toulouse, France, September 28 - October 3,
pp. 296–310 (2008)

9. Mellor, S.J., Clark, A.N., Futagami, T.: Guest editors’ introduction: Model-driven
development. IEEE Software 20(5), 14–18 (2003)

10. OMG. Meta Object Facility (MOF) 2.0 Core Specification (January 2006)
11. Pivoteau, C.: Génération aléatoire de structures combinatoires: méthode de Boltz-

mann effective. Ph.D thesis, UPMC (2008)
12. Pivoteau, C., Salvy, B., Soria, M.: Boltzmann oracle for combinatorial systems.

In: Fifth Colloquium on Mathematics and Computer Science Algorithms, Trees,
Combinatorics and Probabilities, DMTCS Proceedings, pp. 475–488 (2008)

13. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5),
19–25 (2003)

http://www.eclipse.org/modeling/emf/

www.manaraa.com

Establishing Correspondences between Models
with the Epsilon Comparison Language

Dimitrios S. Kolovos

Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK
dkolovos@cs.york.ac.uk

Abstract. Model comparison is an essential prerequisite for a number of model
management tasks in Model Driven Engineering, such as model differencing and
versioning, model and aspect merging and model transformation testing. In this
paper we present the Epsilon Comparison Language (ECL), a hybrid rule-based
language, built atop the Epsilon platform, which enables developers to implement
comparison algorithms at a high level of abstraction and execute them in order to
identify matches between elements belonging to models of diverse metamodels
and modelling technologies.

1 Introduction

Model comparison is the task of identifying matching elements between models. In gen-
eral, matching elements are elements that are involved in a relationship of interest. For
example, before calculating the differences between two models, it is necessary to iden-
tify the pairs of corresponding elements in the two models. Similarly, before merging
homogeneous models, it is essential that matching elements are identified so that they
do not appear in duplicate in the merged model. Finally, in model transformation test-
ing, pairs that consist of elements in the input model and their generated counterparts
in the output model need to be identified.

Several approaches to model matching have been proposed in the literature includ-
ing id-based approaches, which establish matches based on the common non-volatile
identity of model elements, signature-based approaches in which comparison between
elements is achieved via comparison of their respective signatures, and similarity-based
approaches which treat models as typed attributed graphs and compare their elements
based on the (often adjusted by user-defined weights) similarity of their features.

As discussed in [1], the main advantage of similarity-based approaches, such as SiD-
iff [2] and DSMDiff [3], is that they can – relatively – easily be configured to support
new modelling languages. However, they also demonstrate two significant shortcom-
ings: they provide limited support – beyond feature-weight setting parameters – for
exploiting the semantics and particularities of each individual modelling language in
order to improve accuracy and performance, and they cannot be applied to heteroge-
neous models.

To address these limitations, in this paper we present the Epsilon Comparison Lan-
guage (ECL), a task-specific model management language built atop the Epsilon Eclipse

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 146–157, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Establishing Correspondences between Models with the ECL 147

GMT component [4], which enables developers to specify precise language-specific al-
gorithms for establishing matches between elements belonging to models of diverse
metamodels and technologies in a rule-based manner, and at a high level of abstraction.
The rest of the paper is organized as follows. In Section 2 we provide an overview of
the background and related work in the field of model comparison. In Section 3 we
provide a brief discussion on Epsilon, the platform that underpins the proposed ECL
language. Section 4 presents the abstract, concrete syntax and execution semantics of
ECL. In Section 5 we presents an example of using ECL to compare UML2 models,
and in Section 6 we conclude and provide directions to further work.

2 Background and Motivation

Establishing correspondences between elements belonging to different models in an au-
tomated manner is an essential prerequisite for a number of model management tasks
such as model differencing, transformation testing and homogeneous and heteroge-
neous model merging. Given the structured nature of models captured with contempo-
rary metamodelling architectures such as MOF [5] and EMF [6], traditional text-based
comparison and differencing algorithms have been shown to be insufficient for model
comparison [2]. Algorithms based on persistent unique identifiers, such as [7], are fast
but they cannot be applied to modelling technologies that do not support such identi-
fiers or to individually developed models. A signature-based comparison approach is
presented in [8] where instead of using persistent identities, the identities used for com-
parison are instead computed from the features of each element using the Kermeta [9]
language. Although this approach addresses the two aforementioned issues to an ex-
tent, string-based ids are not meaningful for all types of model elements, as the authors
admit.

Another category of approaches, such as SiDiff [2] and DMSDiff [3], treat models
as typed attribute graphs and calculate the similarity of nodes based on the combined
weighted similarity of their features; this is done in a recursive manner. Such algorithms
are typically configurable with regard to the weight assigned to each feature. This is a
direct way to indicate the significance of a feature in the context of a comparison. The
main advantage of such algorithms is that they are generic and easy to adapt to new
metamodels as the customization process typically involves specifying the weights of
the features in the new metamodel. However, due to their generic nature, they generally
cannot exploit more fine-grained semantics of the metamodel to reduce the number of
required comparisons, or to enhance the precision of the results.

In [10], the ATL model-to-model transformation language [11] is used to perform
comparison of two models. While this work demonstrates the feasibility of using a
general-purpose M2M language for comparing models, comparison transformations are
generally verbose1, as they need to compensate for the fact that M2M languages do not
provide tailored constructs for the task of model comparison.

1 For example, in
http://www.eclipse.org/gmt/amw/examples/library/CreateWeaving.
atl, a significant part of the transformation is dedicated to low-level tasks such as identifying
which of the two input models a model element originates from.

http://www.eclipse.org/gmt/amw/examples/library/CreateWeaving.atl
http://www.eclipse.org/gmt/amw/examples/library/CreateWeaving.atl

www.manaraa.com

148 D.S. Kolovos

3 The Epsilon Platform

Epsilon [4] is a platform that provides infrastructure for implementing uniform, inte-
grated and interoperable model management languages that can be used with models of
diverse metamodels and technologies such as EMF and MDR [12]. At the core of Ep-
silon is the Epsilon Object Language (EOL) [13], an OCL-based imperative language
that provides additional features such as model modification, multiple model access,
conventional programming constructs (variables, loops, branches etc.), user interaction,
profiling, and support for transactions. While EOL can be used as a general-purpose
model management language, its primary aim is to be reused for constructing task-
specific languages, and therefore it provides respective extensibility points, discussed
in [13], that enable developers to easily implement the additional requirements of spe-
cific tasks such as model-to-model transformation or model comparison – as discussed
in this paper – atop it.

4 The Epsilon Comparison Language

The aim of the Epsilon Comparison Language (ECL) is to enable users to specify pre-
cise model comparison algorithms in a high-level rule-based manner, and execute them
in order to identify pairs of matching elements between different models. ECL has been
implemented as an extension of EOL and therefore it inherits all its syntax and features
(e.g. accessing multiple models of diverse metamodels simultaneously, invoking native
(Java) code). In this section, the abstract and concrete syntax, as well as the execution
semantics of the language, are discussed in detail.

4.1 Abstract Syntax

In ECL, comparison specifications are organized in modules (ECLModule). As illus-
trated in Figure 1, by extending the core EOL library module construct, an ECL mod-
ule can contain user-defined operations and import other library and ECL modules. In
addition to operations, an ECL module also contains a set of match-rules (MatchRule)
and a set of pre and post blocks.

MatchRules enable users to perform comparison of model elements at a high level of
abstraction. Each match-rule declares a name, and two parameters (leftParameter and
rightParameter) that specify the types of elements it can compare. It also optionally
defines a number of rules it inherits (extends) and if it is abstract, lazy and/or greedy.
The semantics of the latter are discussed in the sequel.

A match rule has three parts. The guard part is an EOL expression or statement
block that further limits the applicability of the rule to specific elements. The compare
part is an EOL expression or statement block that is responsible for comparing a pair
of elements and deciding if they match or not. Finally, the do part is a block of EOL
statements that is executed if the compare part returns true, in order to perform any
additional actions required.

Pre and Post blocks are named blocks of EOL statements which as discussed in the
sequel are executed before and after the match-rules have been executed respectively.

www.manaraa.com

Establishing Correspondences between Models with the ECL 149

Fig. 1. ECL Abstract Syntax

4.2 Concrete Syntax

The concrete syntax of a match-rule is displayed in Listing 1.1.

Listing 1.1. Concrete Syntax of a MatchRule

1 (@lazy)?
2 (@abstract)?
3 (@greedy)?
4 rule <name>
5 match <leftParameterName>:<leftParameterType>
6 with <rightParameterName>:<rightParameterType>
7 (extends (<ruleName>,)*<ruleName>)? {
8
9 (guard (:expression)|({statementBlock}))?

10
11 compare (:expression)|({statementBlock})
12
13 (do {statementBlock})?
14
15 }

Pre and post blocks have a simple syntax that, as presented in Listing 1.2, consists
of the identifier (pre or post), an optional name and the set of statements to be executed
enclosed in curly braces.

Listing 1.2. Concrete Syntax of Pre and Post blocks

1 (pre|post) <name> {
2 statement+
3 }

www.manaraa.com

150 D.S. Kolovos

4.3 Execution Semantics

Rule and Block Overriding. As mentioned above, an ECL module can import a num-
ber of other ECL modules. In this case, the importing ECL module inherits all the rules
and pre/post blocks specified in the modules it imports (recursively). If the module
specifies a rule or a pre/post block with the same name, the local rule/block overrides
the imported one respectively. This feature enables developers to reuse and customize
the behaviour of existing comparison modules with minimal duplication.

Comparison Outcome. As illustrated in Figure 2, the result of comparing two models
with ECL is a trace (MatchTrace) that consists of a number of matches (Match). Each
match holds a reference to the model elements that have been compared (left and right),
a boolean value that indicates if they have been found to be matching or not, a refer-
ence to the rule that has made the decision, and a Map (info) that is used to hold any
additional information required by the user.

During the matching process, a second, temporary, match trace is also used to detect
and resolve cyclic invocation of match-rules as discussed in the sequel.

Fig. 2. ECL Match Trace

4.4 Rule Execution Scheduling

Non-abstract, non-lazy match-rules are evaluated automatically by the execution engine
in a top-down fashion - with respect to their order of appearance - in two passes. In the
first pass, each rule is evaluated for all the pairs of instances in the two models that have
a type-of relationship with the types specified by the leftParameter and rightParameter
of the rule. In the second pass, each rule that is marked as greedy is executed for all pairs
that have not been compared in the first pass, and which have a kind-of relationship with
the types specified by the parameters of the rule. In both passes, to evaluate the compare
part of the rule, the guard must be first satisfied.

www.manaraa.com

Establishing Correspondences between Models with the ECL 151

Before the compare part of a rule is executed, the compare parts of all of the rules
it extends (super-rules) must be executed (recursively). Before executing the compare
part of a super-rule, the engine verifies that the super-rule is actually applicable to the
elements under comparison by checking for type conformance and evaluating the guard
part of the super-rule.

If the compare part of a rule evaluates to true, the optional do part is executed. In
the do part the user can specify any actions that need to be performed for the identi-
fied matching elements, such as to populate the info map of the established match with
additional information or explicitly trigger the comparison of additional elements. Fi-
nally, a new match is added to the match trace that has its matching property set to the
logical conjunction of the results of the evaluation of the compare parts of the rule and
its super-rules.

4.5 The Matches() and doMatch() Built-in Operations

To refrain from performing duplicate comparisons and to de-couple match-rules from
each other, ECL provides the built-in matches(opposite : Any) and doMatch(opposite :
Any) operations for model elements and collections.

When the matches() operation is invoked on a pair of objects, it queries the main
and temporary match-traces to discover if the two elements have already been matched
and if so it returns the cached result of the comparison. Otherwise, it attempts to find
an appropriate match rule to compare the two elements and if such a rule is found,
it returns the result of the comparison, otherwise it returns false. Unlike the top-level
execution scheme, the matches() operation invokes both lazy and non-lazy rules.

In addition to objects, the matches operations can also be invoked to match pairs of
collections of the same type (e.g. a Sequence against a Sequence). When invoked on
ordered collections (i.e. Sequence and OrderedSet), it examines if the collections have
the same size and each item of the source collection matches with the item of the same
index in the target collection. Finally, when invoked on unordered collections (i.e. Bag
and Set), it examines if for each item in the source collection, there is a matching item
in the target collection irrespective of its index. Users can also override the built-in
matches operation using user-defined operations [13] with the same name, that loosen
or strengthen the built-in semantics for particular model element types.

Of similar functionality is the built-in doMatch(opposite : Any) operation with the
difference that the results of comparisons triggered by doMatch are stored in the main-
tained match trace, while the results of comparisons triggered by match are disregarded.
Also, unlike the match operation that returns a boolean, doMatch is void.

Cyclic invocation of matches(). The built-in matches operation significantly simplifies
comparison specifications. It also enhances decoupling between match-rules from each
other since when a rule needs to compare two elements that are outside its scope, it does
not need to know/specify which other rule can compare those elements explicitly.

On the other hand, it is possible - and quite common indeed - for two rules to implic-
itly invoke each other. For example consider the match rule of Listing 1.3 that attempts
to match nodes of the simple Tree metamodel displayed in Figure 3.

www.manaraa.com

152 D.S. Kolovos

Fig. 3. The Tree Metamodel

Listing 1.3. The Tree2Tree rule

1 rule Tree2Tree
2 match l : T1!Tree
3 with r : T2!Tree {
4
5 compare : l.label = r.label and
6 l.parent.matches(r.parent) and
7 l.children.matches(r.children)
8 }

The rule specifies that for two nodes to match, they should have the same label,
belong to matching parents and have matching children. In the absence of a mechanism
for cycle detection and resolution, the rule would end up in an infinite loop. To address
this problem, ECL provides a temporary match-trace which is used to detect and resolve
cyclic invocations of the match() built-in operation.

As discussed above, a match is added to the primary match-trace as soon as the
compare part of the rule has been executed. By contrast, a temporary match (with its
matching property set to true) is added to the temporary trace before the compare part is
executed. In this way, any subsequent attempts to match the two elements from invoked
rules will not re-invoke the rule. Finally, when a top-level rule returns, the temporary
match trace is reset.

4.6 Fuzzy and Dictionary-Based String Matching

In the example of Listing 1.3, the rule specifies that to match, two trees must - among
others - have the same label. However, there are cases when a more relaxed approach to
matching string properties of model elements is desired. For instance, when comparing
two UML models originating from different organizations, it is common to encounter
ontologically equivalent classes which however can have different names (e.g. Client
and Customer). In this case, to achieve a more sound matching, the use of a dictionary or
a lexical database, such as WordNet, is necessary. Alternatively, fuzzy string matching
algorithms such as those presented in [14] can be used.

As several such tools and algorithms have been implemented in various program-
ming languages, it is of our best interest to reuse them instead of re-implementing them.
For example, in Listing 1.4 we use a wrapper for the Simmetrics Java tool to compare
the labels of the trees using the Levenstein algorithm. To achieve this, line 11 invokes
the fuzzyMatch() operation defined in lines 16-18 which uses the simmterics native tool

www.manaraa.com

Establishing Correspondences between Models with the ECL 153

(instantiated in lines 2-4) to match the two labels using their Levenshtein [15] distance
with a threshold of 0.5. The ability of ECL to invoke native (Java) code is inherited
from the core EOL language which underpins it.

Listing 1.4. The FuzzyTree2Tree rule

languagelanguage
1 pre {
2 var simmetrics :=
3 new Native(’org.epsilon.ecl.tools.
4 textcomparison.simmetrics.SimMetricsTool’);
5 }
6
7 rule FuzzyTree2Tree
8 match l : T1!Tree
9 with r : T2!Tree {

10
11 compare : l.label.fuzzyMatch(r.label) and
12 l.parent.matches(r.parent) and
13 l.children.matches(r.children)
14 }
15
16 operation String fuzzyMatch(other : String) : Boolean {
17 return simmetrics.
18 similarity(self,other,’Levenshtein’) > 0.5;
19 }

4.7 Exploiting the Comparison Outcome

Developers can exploit the match trace calculated during the comparison process in the
post sections of the module or export it into another application or Epsilon program.
For example, in a post section, the trace (which is programmatically accessible via the
matchTrace built-in variable) can be printed to the default output stream or serialized
into a model of an arbitrary metamodel. In another use case, the trace may be exported
to be used in the context of a validation module that will use the identified matches to
evaluate inter-model constraints, or in a merging module that will use the matches to
identify the elements on which the two models will be merged.

We have also provided integration with the EMF Compare framework, which can
perform comparison of EMF-based models and visualize the results within Eclipse. Due
to the modular architecture of EMF Compare, we were able to provide an additional
matching engine that executes a user-defined ECL comparison module and visualize its
results using the intuitive EMF Compare user interface.

5 Example

In this section we demonstrate an excerpt of an ECL module that can compare UML
2.1 class models. Our aim in this example is not to provide the complete comparison
but to use exemplar rules from the module to present the features and advantages of the
proposed language.

www.manaraa.com

154 D.S. Kolovos

Listing 1.5. Fragment of UML2 comparison

1 rule Class
2 match l : Left!Class
3 with r : Right!Class {
4
5 compare : l.name = r.name
6
7 do {
8 l.ownedOperation.doMatch(r.ownedOperation);
9 }

10 }
11
12 @lazy
13 rule Operation
14 match l : Left!Operation
15 with r : Right!Operation {
16
17 compare {
18
19 var basicMatch := l.name = r.name;
20
21 if (basicMatch) {
22 if (l.class.hasOnlyOneOp(l.name) and
23 r.class.hasOnlyOneOp(l.name)) {
24
25 return true;
26 }
27 else {
28 return l.ownedParameter.
29 matches(r.ownedParameter);
30 }
31 }
32 else return false;
33 }
34
35 do {
36 l.ownedParameter.doMatch(r.ownedParameter);
37 }
38 }
39
40 @lazy
41 rule Parameter
42 match l : Left!Parameter
43 with r : Right!Parameter {
44
45 compare : l.type.matches(r.type)
46
47 }

www.manaraa.com

Establishing Correspondences between Models with the ECL 155

In line 1, the Class rule specifies that it can compare two classes. The compare part
of the rule specifies that the two classes are to be compared only in terms of their names.
If for two classes the compare condition holds, the do part in line 8 is executed. The do
part instructs the engine to compare the operations of the two classes using the built-in
doMatch operation.

In line 13, the Operation rule specifies that it can compare two operations. The rule is
marked as lazy which means that it will not be invoked by the engine on all the possible
pairs of operations in the two models but instead, it will be invoked only when it is
needed (via a call to the matches or the doMatch operations - the latter being the case in
line 8). To compare two operations, we exploit the semantics of UML which dictate that
there can not be two operations in the same class with the same name and parameter
types. First we perform a basic match in which we check that the two operations have
the same name and store the result in the basicMatch variable in line 19. If the basic
comparison succeeds, in line 22 we check if the two classes that contain the operations
have other operations with the same name. If there is only one operation with the same
name in each class we can disregard all other information and assume that the two
operations match. If not, we also need to check that the parameters of the two operations
match in line 28. Finally, if the two operations are found to be matching, in line 36
we instruct the engine to establish matches for their parameters. This invokes the lazy
Parameter rule in line 41 that compares the parameters based only on their types (as a
change in the name is semantically indifferent for operation parameters in UML).

We have used the fully-fledged ECL comparison module (an excerpt of which is dis-
cussed above) in order to compare UML 2.1 models obtained using reverse engineering
techniques from Eclipse plugins. To visualize the results of the comparison we have
used the integration of ECL with EMF Compare as shown in Figure 4.

This short example has demonstrated that ECL can be used to implement fine-
grained comparison algorithms that exploit the semantics of the respective metamodel.
Also, it illustrates that the use of lazy rules in combination with the built-in matches
and doMatch operations can significantly reduce the size and runtime complexity of the
comparison. Although this example has demonstrated comparing models of a common
metamodel (UML 2.1), it is worth stressing again that ECL can be also used to compare
models of different metamodels and modelling technologies, a feature provided by the
underlying Epsilon platform.

6 Conclusions and Further Work

We have presented the ECL language, which enables developers to implement rule-
based semantically-rich comparisons between models of diverse metamodels. We have
demonstrated the advantages of ECL against generic similarity-based algorithms;
mainly the ability to explicitly define complex matching criteria and to exploit the se-
mantics of the respective metamodels in order to reduce the number of actual compar-
isons - and as a result enhance performance. On the other hand, compared to the effort
required for customizing a similarity-based algorithm, constructing a custom language-
specific comparison with ECL requires substantially more skills and effort. To this end,
the decision on whether to use a fine-grained approach such as ECL or a similarity-
based approach is not clear for all cases; it depends to the amount of effort that can

www.manaraa.com

156 D.S. Kolovos

Fig. 4. The results of comparing two UML 2.1 models with ECL within EMF Compare

be assigned to the task, and the required accuracy. In our experience, similarity-based
algorithms general perform quite well both; however, there always appear to be corner
cases where a more explicit specification of the matching criteria is required. Therefore,
modifying a generic similarity-based algorithm, so that it can be overridden partially by
a more explicit approach such as ECL in order to handle the corner cases, appears to be
a promising direction for further work in this area.

Acknowledgements

The author would like to thank Davide Di Ruscio for providing the reverse engineered
models used in the example of Section 5, as well as Richard Paige and Alfonso Pieran-
tonio for discussions that have contributed to the formation of the views reflected in
this paper. The work in this paper was supported by the European Commission via the
MODELPLEX project, co-funded by the European Commission under the “Informa-
tion Society Technologies” Sixth Framework Programme (2006-2009).

References

1. Kolovos, D.S., Di Ruscio, D., Paige, R.F., Pierantonio, A.: Different Models for Model
Matching: An analysis of approaches to support model differencing. In: Proc. 2nd Workshop
on Comparison and Versioning of Software Models. ACM/IEEE ICSE, Vancouver (2009)
(to appear)

www.manaraa.com

Establishing Correspondences between Models with the ECL 157

2. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large models. In:
ESEC-FSE: Proceedings of the the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineer-
ing, Dubrovnik, Croatia, pp. 295–304 (2007)

3. Lin, Y., Gray, J., Jouault, F.: DSMDiff: A Differentiation Tool for Domain-Specific Models.
European Journal of Information Systems 16(4), 349–361 (2007); Special Issue on Model-
Driven Systems Development

4. Extensible Platform for Specification of Integrated Languages for mOdel maNagement (Ep-
silon), http://www.eclipse.org/gmt/epsilon

5. Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification,
http://www.omg.org/cgi-bin/doc?ptc/03-10-04

6. Eclipse Foundation. Eclipse Modelling Framework, http://www.eclipse.org/emf
7. Alanen, M., Porres, I.: Difference and Union of Models. Technical Report 527, TUCS (April

2003)
8. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A Generic Approach For Automatic

Model Composition. In: Proc. 11th International Workshop on Aspect-Oriented Modeling,
Nashville, USA (September 2007)

9. Chauvel, F., Fleurey, F.: Kermeta Language Overview, http://www.kermeta.org
10. Fabro, M.D.D., Valduriez, P.: Semi-automatic model integration using matching transfor-

mations and weaving models. In: Proceedings of the 2007 ACM symposium on Applied
computing, Seoul, Korea, pp. 963–970 (2007)

11. Jouault, F., Kurtev, I.: Transforming Models with the ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

12. Sun Microsystems. Meta Data Repository, http://mdr.netbeans.org
13. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language. In: Rensink, A.,

Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142. Springer, Heidelberg
(2006)

14. Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys
(CSUR) 33(1), 31–88 (2001)

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10, 707–710 (1966)

http://www.eclipse.org/gmt/epsilon
http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://www.eclipse.org/emf
http://www.kermeta.org
http://mdr.netbeans.org

www.manaraa.com

Dependent and Conflicting Change Operations of
Process Models

Jochen M. Küster1, Christian Gerth1,2, and Gregor Engels2

1 IBM Zurich Research Laboratory, Säumerstr. 4
8803 Rüschlikon, Switzerland

{jku,cge}@zurich.ibm.com
2 Department of Computer Science, University of Paderborn, Germany

{gerth,engels}@upb.de

Abstract. Version management of models is common for structural diagrams
such as class diagrams but still challenging for behavioral models such as pro-
cess models. For process models, conflicts of change operations are difficult to
resolve because often dependencies to other change operations exist. As a conse-
quence, conflicts and dependencies between change operations must be computed
and shown to the user who can then take them into account while creating a con-
solidated version. In this paper, we introduce the concepts of dependencies and
conflicts of change operations for process models and provide a method how to
compute them. We then discuss different possibilities for resolving conflicts. Us-
ing our approach it is possible to enable version management of process models
with minimal manual intervention of the user.

1 Introduction

Version management of models is a crucial technique for enabling modeling in dis-
tributed modeling scenarios and has recently been identified as one challenge in model
management [9]. In general, it requires to compute and visualize changes that have been
performed on a common source model while creating different versions. Based on this,
version management capabilities then have to enable the user to create a consolidated
model, by accepting or rejecting changes and thereby modifying the original source
model.

A key requirement for consolidation of changed models is that it should impose
minimal manual overhead on the user: Otherwise, a straightforward solution would be
that the user remodels all changes manually. Nowadays, version management is a com-
mon functionality of mainstream modeling tools such as the IBM Rational Software
Architect [18]. However, for behavioral models such as process models, inspecting and
accepting or rejecting changes can involve quite some overhead if the changes to be
dealt with are numerous. One reason for this is that the semantics of behavioral mod-
els is usually more complex than for structural models. A straightforward approach to
compute all changes on model elements (called elementary changes) and display them
is difficult to handle for the user: typically, elementary changes cannot be considered in
isolation but must be aggregated to compound changes [16,27].

To enable a high degree of automation within consolidation of changes, it is impor-
tant to understand dependencies and conflicts of changes. Informally, if two changes are

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 158–173, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Dependent and Conflicting Change Operations of Process Models 159

dependent, then the second one requires the application of the first one. If two changes
are in conflict, then only one of the two can be applied. Other than in structural models,
in behavioral models changes are often dependent on one another. As a consequence, an
approach for computing dependent and conflicting compound changes is required. Fur-
ther, once conflicts have been computed, techniques for resolving conflicts are needed
that take into account the characteristics of the modeling language.

In this paper, we study dependencies and conflicts of compound changes for process
models. We first capture each of our compound change operations as a model trans-
formation and then compute critical pairs [3,10,11] which can be used for detecting
dependent and conflicting transformations. We then show how the results from critical
pair analysis can be encoded as conditions which enable fast checks for dependencies
and conflicts. We extend dependencies and conflicts to change sequences and provide
a means of breaking up a change sequence into individual subsequences such that they
can be dealt with separately in the conflict resolution process. For conflict resolution,
we propose several resolution options that take into account characteristics of com-
pound change operations. Using our approach, dependencies and conflicts of compound
change operations in change logs can be computed and displayed to the user. In an eval-
uation we show that our approach leads to considerable less dependencies and conflicts
and also to less user intervention for inspecting and resolving changes compared to an
approach based on elementary changes.

The paper is structured as follows. First, in Section 2 we introduce our example sce-
narios that we obtain when performing process modeling in a distributed environment.
In Section 3, we discuss how dependencies and conflicts of change operations can be
defined and computed. In Section 4, we extend the notion of dependency and conflict
to change sequences and in Section 5 we present our approach to conflict resolution.
Section 6 reports on tool support and an evaluation of our approach. Finally, we discuss
related work and future work.

2 Background

In this section, we introduce our case study motivated by process modeling in the IBM
WebSphere Business Modeler [1]. Figure 1 shows an example business process model
V from the insurance domain. The language supported by IBM WebSphere Business
Modeler has similarities to UML 2.0 Activity Diagrams [22]: Nodes can be Actions
or ControlNodes where ControlNodes contain Decision and Merge, Fork and Join, Ini-
tialNodes and FinalNodes. Nodes are connected by control flow as it is known from
UML Activity Diagrams. In the example in Figure 1, an insurance claim is first checked,
then it is recorded and then a decision is made whether to settle or reject it.

In a distributed modeling scenario, the process model V might have been created by
the process model representative in an enterprise and then given to two colleagues for
further elaboration. During this elaboration period, one colleague creates model V1 and
the other one model V2. Afterwards, the process model representative is faced with the
task of inspecting each change and then either accepting or rejecting it.

A common approach for version management of models is to capture possible op-
erations performed on the model. For behavioral models such as process models, it is

www.manaraa.com

160 J.M. Küster, C. Gerth, and G. Engels

possible to design compound change operations that transform a model from one con-
sistent state into a new consistent state. Following this idea, we have previously pro-
posed compound change operations for process models [16] as follows: InsertAction,
DeleteAction or MoveAction operations allow to insert, delete or modify actions and
always produce a connected process model as output. Each of the operations consists
of several elementary changes such as creating a new action and redirecting source and
targets of the edges. Similarly, InsertFragment, DeleteFragment and MoveFragment
operations can be used for inserting, deleting or moving a complete fragment of the
process model. Here, a fragment can either be an alternative fragment consisting of a
Decision and a Merge node, a concurrent fragment consisting of a Fork and a Join node
or further types of fragments including unstructured or complex fragments which allow
to express all combinations of control nodes [16].

Record
Claim

Check
Claim

Settle
Claim

Reject
Claim

V2

Initial
Node

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Action
Decision

Merge Final
Node

Record
Claim Check

Claim

Settle
Claim

Reject
Claim

Fork Join
Calculate

Loss Amount

Send
Confirmation

V

V1

Recalc. Cust.
Contribution

Pay
Out

Retrieve
add. Data

Call
Customer

Send Rej.
Letter

Close
Claim

Send
Declinature

Update
Cust. Record

Calculate
Loss Amount

Send Letter

Recalc. Cust.
Contribution

Pay
Out

Fig. 1. Example

Action Mapping (V1, V2)
“Retrieve add. Data” – “”
“Calculate Loss Amount” –

“Calculate Loss Amount”
“Recalc. Cust. Contribution” –

“Recalc. Cust. Contribution”
“Pay Out” – “Pay Out”
“Send Confirmation” – “Send Letter”
“Call Customer” – “”
“Send Rej. Letter” – “Send Declinature”
“” – “Update Cust. Record”

Fig. 2. Action mapping between
V1 and V2

For the following discussions, we assume knowl-
edge about newly introduced action nodes that are sup-
posed to be identical in different versions, captured by
a mapping of identical actions shown in Figure 2.

In addition, we assume that each sequence of
change operations is recorded in a change log. This
change log describes the change operations performed
on the source model to obtain the target model and
can either be logged during editing or reconstructed by
comparing source and target model, proposed in [16].

www.manaraa.com

Dependent and Conflicting Change Operations of Process Models 161

We further assume that this change log is clean, i.e. it does not contain unnecessary
change operations that are later in the change log overridden [23]. In Figure 3, two
change logs are given: ∆(V, V1) describes the sequence of change operations for ob-
taining V1 from V and ∆(V, V2) describes the sequence of change operations for obtain-
ing V2 from V . For example, InsertAlt.Fragment(FA, ”Reject Claim”, ”Close Claim”)
introduces a new alternative fragment called FA between the nodes ”Reject Claim” and
”Close Claim”.

∆(V, V1):

< InsertAlt.Fragment(FA, “Reject Claim”, “Close Claim”),
DeleteAction(“Close Claim”, FA, Merge2),
InsertCon.Fragment(FC1, “Settle Claim”, Merge1),
InsertAction(“Pay Out”, Fork1

FC1, Join1
FC1),

InsertAction(“Send Conf.”, Fork2
FC1, Join2

FC1),
InsertCyclicFragment(FCy, “Record Claim”, Decision),
MoveAction(“Check Claim”, InitialNode, “Record Claim”,

MergeFCy, DecisionFCy),
InsertCon.Fragment(FC2, Fork1

FC1, “Pay Out”),
InsertAction(“Ret. add. Data”, Decision2

FCy, Merge2
FCy),

InsertAction(“Calc. Loss Amount”, Fork1
FC2, Join1

FC2),
InsertAction(“Call Customer”, Decision1

FA, Merge1
FA),

InsertAction(“Send. Rej. Letter”, Decision2
FA, Merge2

FA),
InsertAction(“Recalc. Cust. Contrib.”, Fork2

FC2, Join2
FC2) >

∆(V, V2):

< InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertCon.Fragment(FC5, Fork2

FC4, Join2
FC4),

InsertAction(“Send Letter”, Fork1
FC4, Join1

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
MoveAction(“Check Claim”, InitialNode, “Record Claim”,

“Record Claim”, Decision),
InsertAction(“Send Declinature”, Fork1

FC3, Join1
FC3),

InsertAction(“Calc. Loss Amount”, Fork1
FC5, Join1

FC5),
InsertAction(“Update Cust. Record”, Fork2

FC3, Join2
FC3),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5) >

Fig. 3. Change logs ∆(V, V1) and ∆(V, V2)

For the following discussion, we distinguish between two scenarios: In the single
user scenario, a sequence of change operations is performed on a model V , obtaining
model V1. Afterwards this sequence of change operations needs to be displayed to the
user and for each change the user either has to confirm or reject it. In the multi-user
scenario, two sequences of change operations are performed concurrently on V , leading
to V1 and V2. Afterwards, all change operations are reconsidered and either rejected or
confirmed.

Requirements for both scenarios are that the application of changes should be
automatic and involve minimal user interaction. This requires that the change op-
erations can be executed automatically and requires the validity of their parame-
ters: If the parameters are invalid then a change operation becomes non-applicable.
For this purpose, it is important that dependencies between change operations in
the change sequences are known: The rejection of one operation can turn other
operations non-applicable. For example, the rejection of an InsertAlt.Fragment op-
eration leads to the non-applicability of all operations operating on this fragment.
In addition, in the multi-user scenario, conflicts need to be identified because
it is impossible to apply both operations that are in conflict without adaptation.
For example, InsertAlt.Fragment(FA, ”Reject Claim”, ”Close Claim”) and InsertCon.-
Fragment(FC3, ”Reject Claim”, ”Close Claim”) are in conflict because either an alter-
native or a concurrent fragment is inserted at the same position. This means that once
one of the change operations has been chosen the other one becomes non-applicable.
In the following, we first provide a concept for dependencies and conflicts of change
operations and then proceed to conflict resolution.

www.manaraa.com

162 J.M. Küster, C. Gerth, and G. Engels

3 Dependencies and Conflicts of Change Operations

In this section, we establish the notions of dependencies and conflicts of change op-
erations and discuss how to compute them. We first formalize change operations using
graph transformations and then compute potential dependencies and conflicts of change
operations.

3.1 Metamodel and Change Operations

Change operations can be formalized over a process model metamodel as has been done
previously for other model transformation rules. We assume a business process model
defined by the simplified metamodel shown in Figure 4 consisting of nodes connected
by edges. Nodes can be Actions or ControlNodes or Fragments. ControlNodes contain
Decision and Merge, Fork and Join, InitialNodes and FinalNodes. We assume that the
metamodel is restricted by constraints and in particular that for Actions, only at most
one incoming and outgoing edge is allowed. Fragments are an extension that allow us to
represent a decomposition of the process model which can be computed using existing
algorithms [26]. Fragments can be used for various analysis purposes such as control
and data flow analysis but are also beneficial in the context of version management
because they allow to detect and specify compound changes [16].

Fig. 4. Metamodel for process models

Each change
operation c on a
model V can be
viewed as a model
transformation rule
which can be for-
malized as a typed
attributed graph
transformation
rule [11,14,21]
where the type
graph represents
the metamodel.
A typed graph
transformation rule
p : L → R consists
of a pair of typed
instance graphs L, R such that the union is defined. A graph transformation step from

a graph G to a graph H, denoted by G
p(o)
=⇒ H, is given by a graph homomorphism

o : L ∪ R → G ∪ H, called occurrence, such that the left hand side is embedded into G
and the right hand side is embedded into H and precisely that part of G is deleted which
is matched by elements of L not belonging to R, and, that part of H is added which is
matched by elements new in R. For a rule p, an inverse rule p−1 can be constructed that
inverts the transformation defined by p.

The change operations used in Figure 3 are specified as graph transformation rules
in Figure 5. Here, new elements and deleted elements are visualized using dashed lines

www.manaraa.com

Dependent and Conflicting Change Operations of Process Models 163

and dotted lines, respectively. The InsertAction operation inserts a new Action between
two existing nodes and also reconnects the process model such that it stays connected.
For this purpose, the left hand side of the rule matches a fragment f and two nodes a
and b connected by an edge e. It then creates a new Action x and a new edge e2 and
redirects the target of the edge e1 to be the new Action. In a similar way, DeleteAction
and MoveAction delete an action or move an action, respectively. Fragment operations
are used for inserting, deleting or moving a fragment of the process model. Note that
fragments can be concurrent fragments or alternative fragments or of a further type.
Details about the fragment structure are left out here for simplification.

a:Node e1:Edge b:Node

a:Node e1:Edge x:Action e2:Edge b:Node

a) InsertAction(x,a,b)

a:Node e1:Edge b:Node

a:Node e1:Edge x:Action e2:Edge b:Node

b) DeleteAction(x,a,b)

a:Node e3:Edge b:Node

n1:Node e1:Edge x:Action e2:Edge n2:Node

c) MoveAction(x,n1,n2,a,b)

n1:Node e1:Edge n2:Node

a:Node e3:Edge x:Action e4:Edge b:Node

f:Fragment

f:Fragment

f:Fragment

f:Fragment

a:Node e1:Edge b:Node

d) DeleteFragment(f,a,b)

a:Node e3:Edge b:Node

e) MoveFragment(f,n1,n2,a,b)

n1:Node e1:Edge n2:Node

a:Node e1:Edge f:Fragment e2:Edge b:Node

n1:Node e1:Edge f:Fragment e2:Edge n2:Node

a:Node e3:Edge f:Fragment e4:Edge b:Node

g:Fragment

g:Fragment

a:Node e1:Edge b:Node

a:Node e1:Edge f:Fragment e2:Edge b:Node

f) InsertFragment(f,a,b)
e:Fragment

e:Fragment

f:Fragment

f:Fragment

e:Fragment

e:Fragment

e:Fragment

e:Fragment

e:Fragment

e:Fragment

Fig. 5. Specification of operations dealing with Actions and Fragments

3.2 Dependencies and Conflicts of Changes

For graph transformation, dependencies and conflicts have been defined [5,10,21]: For-

mally, given a sequence of graph transformations G
p1(o1)
=⇒ H1

p2(o2)=⇒ X, H1
p2(o2)
=⇒ X

is (weakly sequential) independent of G
p1(o1)
=⇒ H1 if the occurrence o2(L2) is already

www.manaraa.com

164 J.M. Küster, C. Gerth, and G. Engels

present before the application of p1. This is the case if o2(L2) does not overlap with
objects created by p1. If in addition p2 does not delete objects that are needed for the
application of p1, then p1 and p2 can be exchanged and are called sequentially indepen-
dent.

Formally, given two graph transformations G
p1(o1)=⇒ H1 and G

p2(o2)
=⇒ H2, G

p1(o1)=⇒ H1

is (weakly parallel) independent of G
p2(o2)
=⇒ H2 if the occurrence o1(L1) of the left-

hand side of p1 is preserved by the application of p2. This is the case if o1(L1) does
not overlap with objects that are deleted by p2. If the two transformations are mutually
independent, they can be applied in any order yielding the same result. In this case we
speak of parallel independence. Otherwise, if one of two alternative transformations
is not independent of the second, the second will disable the first. In this case, the
two steps are in conflict. According to the Local Church Rosser Theorem [5]1, parallel
independence of two transformation steps induces their sequential independence and
vice versa (with adapted occurrences).

“Reject Claim”:Node e1:Edge “Close Claim”:Node

e:Fragment

InsertAlt.Fragment(FA,
“Reject Claim”,
“Close Claim”)

InsertCon.Fragment(FC3,
“Reject Claim”,
“Close Claim”)

“Reject Claim”:Node

e1:Edge

FA:AlternativeFragment

e2:Edge

“Close Claim”:Node

e:
F

ra
gm

en
t

“Reject Claim”:Node

e1:Edge

FC3:ConcurrentFragment

e2:Edge

“Close Claim”:Node

e:F
ragm

ent

G

H1 H2

Reject
Claim

Close
Claim

… …

Reject
Claim

Close
Claim

…

…
Reject
Claim

Close
Claim

… …

b)a)

InsertAlt.Fragment(FA,
“Reject Claim”,
“Close Claim”)

InsertCon.Fragment(FC3,
“Reject Claim”,
“Close Claim”)

Fig. 6. A conflict between two changes

Often, we are not only interested to know whether two particular transformation
steps are parallel or sequentially independent but also whether two transformation rules
are parallel or sequentially independent. Related work (e.g. [10]) already discusses the
notion of potential conflicts and dependencies. Given two rules p1, p2, a potential con-
flict or dependency occurs if there exist transformation steps such that a conflict or
sequential dependency occurs. Given two rules p1 and p2, the computation of potential
conflicts and dependencies can be done using critical pairs. A critical pair is a pair of

transformation steps H1
p1(o1)⇐= G

p2(o2)=⇒ H2 which are in conflict and with the property
that G is minimal.

Critical pairs of two rules p1 and p2 can be computed by overlapping the left hand
sides of p1 and p2 in all possible ways such that there exists at least one object that
is deleted by one of the rules and both rules are applicable. Figure 6 a) shows two
conflicting changes in concrete syntax from our example and Figure 6 b) shows the

1 The Local Church Rosser Theorem has been proven for typed attributed graph transformation
in [8].

www.manaraa.com

Dependent and Conflicting Change Operations of Process Models 165

critical pair for this situation. Here, both changes insert a fragment at the same position
in G. If one of the changes is applied, the other one will not be applicable anymore.

In the following, we discuss the results of critical pair analysis obtained for the differ-
ent scenarios. In the single-user scenario it is important to know which changes can be
independently rejected/confirmed. This can be achieved by studying compound opera-
tions for sequential independence. The idea is here to determine when compound oper-
ations are sequentially independent based on the parameters they have. As an example,
an InsertFragment operation followed by an InsertAction operation into the fragment
leads to a dependency. This means that if the InsertFragment operation is rejected, also
the (dependent) InsertAction operation needs to be rejected.

In order to compute the sequential dependencies between compound changes, given
two rules p1 and p2, we compute critical pairs of p1 and p−1

2 and p−1
1 and p2 [10]. The

critical pairs obtained are then encoded by specifying conditions on the parameters of
the operations and captured in a dependency matrix2. An excerpt of the dependency
matrix is shown in Figure 7 (a)3 specifying dependent configurations for InsertAction
operations. For example, InsertAction(X1, A, B) and InsertFragment(F2, C, D) are se-
quentially dependent if C = X1 ∨ D = X1.

In the multi-user scenario, given two rules p1 and p2, we compute the critical pairs
of p1 and p2 for all combinations of change operations. Critical pairs obtained are then
encoded by specifying conditions on the parameters of p1 and p2, partially shown in a
conflict matrix in Figure 7 (b)5 for our InsertAction operations.

[IA(X1), MA(X2)]:
(nQ = A & nT = X1) v
(nQ = X1 & nT = B) v
(X2 = A & oT = B) v
(oQ = X1 & X2 = B) v
(oQ=A & X2=X1 & oT=B)

MoveAction
(X2,oQ,oT,nQ,nT)

[IA(X1), IF(F2)]:
C = X1 v D = X1

[IA(X1), DA(X2)]:
X2 = X1 v
(D = X1 & X2 = A) v
(C = X1 & X2 = B)

[IA(X1), IA(X2)]:
C = X1 v D = X1

InsertAction
(X1,A,B)

InsertFragment
(F2,C,D)

DeleteAction
(X2,C,D)

InsertAction
(X2,C,D)

(a) Sequential
Dependencies

(nQ = A & nT = B) v
(X2 = A & oT = B) v
(oQ = A & X2 = B)

MoveAction
(X2,oQ,oT,nQ,nT)

(C = A & D = B) (C = A & X2 = B) v
(X2 = A & D = B)

(C = A & D = B)InsertAction
(X1,A,B)

InsertFragment
(F2,C,D)

DeleteAction
(X2,C,D)

InsertAction
(X2,C,D)

(b) Conflicts

Fig. 7. Configurations of compound operations that lead to sequential dependencies (a) and con-
flicts (b)

4 Dependencies and Conflicts of Change Sequences

Until now we have studied dependencies and conflicts of change operations in isolation.
We now extend our concept of dependencies and conflicts to change sequences in order
to deal with change logs as introduced above.

2 We used the AGG tool [25] to partially compute and validate the entries of the matrices. How-
ever, AGG does currently not support inheritance in the type graph which required a simplifi-
cation of rules.

3 The complete dependency and conflict matrices are given in [15].

www.manaraa.com

166 J.M. Küster, C. Gerth, and G. Engels

4.1 Dependencies of Change Sequences

For the following discussion, we assume that a change sequence ∆ = 〈t1(o1), .., tn(on)〉
consists of a sequence of transformation steps ti at an occurrence oi such that the trans-

formation G = S0
t1(o1)
=⇒ S1..Sn−1

tn(on)=⇒ Sn = H exists. Informally, a change sequence ∆
can be considered as a concatenation of model transformations and represents a change
log as introduced before. As a shorthand, we also write ∆ = 〈t1, .., tn〉.

Given a change sequence ∆ = 〈t1, .., tn〉, we are interested in sequential depen-
dencies because these are the changes that cannot be resolved in any order. Potential
dependencies that can occur between two changes have been captured in the depen-
dency matrix, shown partially in Figure 7. Based on this, a given change sequence
∆ = 〈t1, .., tn〉 can be broken up into subsequences ci such that the following holds:

– each subsequence ci consists of a sequence of change operations ti ∈ ∆, i.e. ck =
〈tl, .., tr〉 with the property that ti is not dependent of any change operation not
contained in ck, and

– for two subsequences ck and cl, the change operations contained are disjoint.

These subsequences can be computed as follows: Given a ∆, we compute for each pair
of compound changes ti and tj sequential dependencies. Thereby we check whether
operations ti and tj with their concrete parameters form a critical pair according to the
dependency matrix given in [15]. If ti and tj are dependent, they belong to the same
subsequence.

The dependency matrix can only indicate a sequential dependency between two op-
erations whose signatures overlap. There are cases where a sequential dependency ex-
ists and signatures do not overlap. These dependencies will be detected in a transitive
way. For instance, the sequential dependency of InsertAction(”Calc. Loss Amount”,
Fork1

FC5, Join1
FC5) on InsertConcurrentFragment(FC4, ”Settle Claim”, Merge1) (frag-

ment FC4) will be detected transitively since the insertion of the action ”Calc. Loss
Amount” is dependent on InsertConcurrentFragment(FC5, Fork2

FC4, Join2
FC4) (fragment

FC5) which is in turn dependent on the insertion of fragment FC4.
In the end, each ti belongs to exactly one subsequence and the operations in differ-

ent subsequences are sequentially independent. According to the Local Church Rosser
Theorem this induces parallel independence for operations in disjoint subsequences as
well.

∆(V, V2):

< InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertCon.Fragment(FC5, Fork2

FC4, Join2
FC4),

InsertAction(“Send Letter”, Fork1
FC4, Join1

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
MoveAction(“Check Claim”, InitialNode, “Record Claim”,

“Record Claim”, Decision),
InsertAction(“Send Declinature”, Fork1

FC3, Join1
FC3),

InsertAction(“Calc. Loss Amount”, Fork1
FC5, Join1

FC5),
InsertAction(“Update Cust. Record”, Fork2

FC3, Join2
FC3),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5) >

∆(V, V2):

< MoveAction(“Check Claim”, InitialNode, “Record Claim”,
“Record Claim”, Decision) >

< InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertAction(“Send Declinature”, Fork1

FC3, Join1
FC3),

InsertAction(“Update Cust. Record”, Fork2
FC3, Join2

FC3) >

< InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertAction(“Send Letter”, Fork1

FC4, Join1
FC4),

InsertCon.Fragment(FC5, Fork2
FC4, Join2

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
InsertAction(“Calc. Loss Amount”, Fork1

FC5, Join1
FC5),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5) >

Fig. 8. Independent subsequences in ∆(V, V2)

www.manaraa.com

Dependent and Conflicting Change Operations of Process Models 167

Figure 8 shows the sequence of changes applied on our example model V in order
to obtain V2 and the decomposition of these changes into parallel independent subse-
quences. The parallel independent subsequences for change sequences are important for
several reasons: firstly, they show which changes are dependent which is important for
the single-user scenario. Secondly, for the multi-user scenario, the parallel independent
subsequences will be used for computing conflicts.

4.2 Conflicts of Change Sequences

Given two change sequences ∆1 = 〈t1, .., tn〉 and ∆2 = 〈s1, .., sm〉, we first compute
the parallel independent subsequences of each change sequence as described previ-
ously. Given two subsequences ck = 〈ti, ..tj〉 ∈ ∆1 and dl = 〈sm, .., sn〉 ∈ ∆2 we are
then interested in conflicts because these must be taken into account when rejecting or
accepting changes in the multi-user scenario.

∆(V, V2):

x) <MoveAction(“Check Claim”, InitialNode, “Record Claim”,
“Record Claim”, Decision)>

y) <InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertAction(“Send Declinature”, Fork1

FC3, Join1
FC3),

InsertAction(“Update Cust. Record”, Fork2
FC3, Join2

FC3)>

z) <InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertAction(“Send Letter”, Fork1

FC4, Join1
FC4),

InsertCon.Fragment(FC5, Fork2
FC4, Join2

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
InsertAction(“Calc. Loss Amount”, Fork1

FC5, Join1
FC5),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5)>

∆(V, V1):

a) <InsertAlt.Fragment(FA, “Reject Claim”, “Close Claim”),
DeleteAction(“Close Claim”, FA, Merge2),
InsertAction(“Call Customer”, Decision1

FA, Merge1
FA),

InsertAction(“Send. Rej. Letter”, Decision2
FA, Merge2

FA)>

b) <InsertCon.Fragment(FC1, “Settle Claim”, Merge1),
InsertAction(“Pay Out”, Fork1

FC1, Join1
FC1),

InsertAction(“Send Conf.”, Fork2
FC1, Join2

FC1),
InsertCon.Fragment(FC2, Fork1

FC1, “Pay Out”),
InsertAction(“Calc. Loss Amount”, Fork1

FC2, Join1
FC2),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC2, Join2

FC2)>

c) <InsertCyclicFragment(FCy, “Record Claim”, Decision),
MoveAction(“Check Claim”, InitialNode, “Record Claim”,

MergeFCy, DecisionFCy),
InsertAction(“Ret. add. Data”, Decision2

FCy, Merge2
FCy)>

Fig. 9. Computation of conflicts between subsequences of change sequences

Conflicts can be computed based on the results of critical pair analysis which deter-
mines potential conflicts, shown partially in Figure 7. For computation of conflicts, the
operations in two change sequences are analyzed pairwise for conflicts. Figure 9 shows
the result of this computation for our example. Here, three conflicts occur, indicated by
the arrows. Once conflicts have been determined, conflicts need to be resolved. For this,
different options exist that will be discussed in the next section.

After resolving a conflict between ck and dl, new conflicts between ∆1 and ∆2 can
occur. For identifying these, we recompute conflicts after each conflict resolution. Op-
timizations of this procedure where recomputation of conflicts is restricted to certain
subsequences is left for future work. Resolving a conflict can also lead to less conflicts if
an operation together with its subsequence is rejected and its dependent operations also
become non-applicable. In the following section, we will elaborate on conflict resolution.

5 Conflict Resolution

In this section, we discuss the different options for conflict resolution. For the following
discussion, we assume that two change sequences ∆1 and ∆2 exist that have been

www.manaraa.com

168 J.M. Küster, C. Gerth, and G. Engels

divided into parallel independent subsequences as previously explained. For a given
conflict, conflict resolution can consist of (at least) the following choices:

– selection of the subsequence to adopt, meaning that the complete other subsequence
is discarded and not considered further,

– performing a combination of the two operations or unifying the two operations. The
operations in conflict have a similar type or are structurally very similar. In such a
case, the conflict can be resolved by performing one operation and establishing a
mapping between the elements used. If the operations cannot be unified directly,
i.e. one operation inserts a fragment with six branches, the other one with only two
branches, then a common superset or subset can be chosen.

– both operations are performed by modifying one or both operations, leading e.g.
to a sequential or parallel insertion of fragments or actions.

The choice which type of conflict resolution to adopt is made by the user, usually
based on his or her domain knowledge of the models, and cannot be automated.

In many cases, the decision about conflict resolution influences the change opera-
tions that are dependent on the conflicting operations. In the case of combination using
unification, the parameters of the dependent operations have to be recomputed by re-
placing the unified parameters of the conflicting operations. In the case of a combination
by introducing a new operation, this also yields to recomputation of parameters.

In the case that one of the two subsequences is adopted and the other one is discarded,
it is important to know about possible conflicts that occur within the adopted subse-
quence. By adoption, all the operations inside the subsequence will also be adopted,
meaning that in case of a conflict this type of conflict resolution will be chosen for
contained operations as well.

∆(V, V2):
…

z) <InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertAction(“Send Letter”, Fork1

FC4, Join1
FC4),

InsertCon.Fragment(FC5, Fork2
FC4, Join2

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
InsertAction(“Calc. Loss Amount”, Fork1

FC5, Join1
FC5),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5)>

∆(V, V1):
…

b) <InsertCon.Fragment(FC1, “Settle Claim”, Merge1),
InsertAction(“Pay Out”, Fork1

FC1, Join1
FC1),

InsertAction(“Send Conf.”, Fork2
FC1, Join2

FC1),
InsertCon.Fragment(FC2, Fork1

FC1, “Pay Out”),
InsertAction(“Calc. Loss Amount”, Fork1

FC2, Join1
FC2),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC2, Join2

FC2)>
…

unified

Fig. 10. Unification of two conflicts

In our example, a conflict which is likely to be resolved by a unification is the conflict
between subsequence b) and z) shown in Figure 10. After the unification of InsertCon.-
Fragment(FC1, ...) and InsertCon.Fragment(FC4, ...) the parameters and conflicts for
the changes that are dependent on the unified changes are recomputed. In this case,
FC1 and FC4 are unified as well as the nodes ForkFC1 and ForkFC4 and JoinFC1 and
JoinFC4. This leads to two additional conflicts between InsertAction(Pay Out, ...) and
InsertAction(Send Letter, ...) as well as InsertAction(Send Conf., ...) and InsertCon.-
Fragment(FC5, ...), because due to the unification the dependent changes are now ap-
plied in the same concurrent fragment and their parameters overlap.

www.manaraa.com

Dependent and Conflicting Change Operations of Process Models 169

Conflict resolution entails the application of one or both conflicting, possibly mod-
ified or adapted, change operations. After this, conflicts between the following oper-
ations are recomputed and displayed to the modeler, leading to an iterative resolution
process.

Settle
Claim

Reject
Claim

Calculate
Loss Amount

Send
ConfirmationVmerged

Recalc. Cust.
Contribution

Pay
Out

Send
Declinature

Update
Cust. Record

∆(V, V2):
x) <MoveAction(“Check Claim”, InitialNode, “Record Claim”,

“Record Claim”, Decision)>

y) <InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertAction(“Send Declinature”, Fork1

FC3, Join1
FC3),

InsertAction(“Update Cust. Record”, Fork2
FC3, Join2

FC3)>

z) <InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertAction(“Send Letter”, Fork1

FC4, Join1
FC4),

InsertCon.Fragment(FC5, Fork2
FC4, Join2

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
InsertAction(“Calc. Loss Amount”, Fork1

FC5, Join1
FC5),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5)>

∆(V, V1):
a) <InsertAlt.Fragment(FA, “Reject Claim”, “Close Claim”),

DeleteAction(“Close Claim”, FA, Merge2),
InsertAction(“Call Customer”, Decision1

FA, Merge1
FA),

InsertAction(“Send. Rej. Letter”, Decision2
FA, Merge2

FA)>

b) <InsertCon.Fragment(FC1, “Settle Claim”, Merge1),
InsertAction(“Pay Out”, Fork1

FC1, Join1
FC1),

InsertAction(“Send Conf.”, Fork2
FC1, Join2

FC1),
InsertCon.Fragment(FC2, Fork1

FC1, “Pay Out”),
InsertAction(“Calc. Loss Amount”, Fork1

FC2, Join1
FC2),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC2, Join2

FC2)>

c) <InsertCyclicFragment(FCy, “Record Claim”, Decision),
MoveAction(“Check Claim”, InitialNode, “Record Claim”,

MergeFCy, DecisionFCy),
InsertAction(“Ret. add. Data”, Decision2

FCy, Merge2
FCy)>

Record
Claim

Check
Claim

Call
Customer

unified (FC1)

unified (F
A)both

Close
Claim

Fig. 11. A possible merged process model based on V and the modifications made in V1 and V2

Figure 11 illustrates one possible resulting process model Vmerged based on the
modifications made in V1 and V2. In order to visualize the conflict resolution process,
applied compound changes are printed in bold letters and rejected changes in italic
letters. We start the conflict resolution by unifying the conflict between subsequence
a) and y) and applied InsertAlt.Fragment(FA, ...) on model V . By the unification, all
occurrences of Fork∗FC3 and Join∗

FC3 in the signatures of the remaining operations are
substituted by Decision∗

FA and Merge∗FA. Thereby, two new conflicts between the Insert-
Action operations in subsequence a) and y) arise. In case of the conflict between Insert-
Action(”Call Customer”, ...) and InsertAction(”Send Declinature”, ...), we select both
operations for application, leading to a sequential insertion of the two actions. In
the other case, we apply InsertAction(”Update Cust. Record”, ...) and reject Insert-
Action(”Send Rej. Letter”, ...). Finally, we apply DeleteAction(”Close Claim”, ...).
Further, we resolve the conflict between b) and z) by unification as described previ-
ously and then apply only operations in b). For the resolution of the conflict between
subsequence c) and x), we decide to adopt only subsequence x) and rejected all oper-
ations contained in subsequence c). This example shows that using our approach it is
possible to resolve conflicts between change sequences in an iterative way with minimal
manual intervention such that a consolidated process model is constructed.

6 Tool Support and Evaluation

In this section, we report on tool support and evaluation of our approach. The depen-
dency and conflict detection approach has been implemented as a prototype for IBM

www.manaraa.com

170 J.M. Küster, C. Gerth, and G. Engels

Fig. 12. Business Process Merging Prototype in the IBM WebSphere Business Modeler

WebSphere Business Modeler. Figure 12 shows a screenshot of the extension with the
example and computed conflicts.

One goal of our evaluation was to show that our approach leads to less conflicts and
dependencies than an approach relying on elementary change operations. Another goal
was to show that our approach then also leads to less required user intervention than
an approach based on elementary operations. Figure 13 provides an overview of our
results. Detailed results of our evaluation and the case study can be found in [15].

722# of Work Units for
Sample Resolution

323# of initial Conflicts

7103645# of Dependencies

10133342# of Change Operations

∆(V, V2)∆(V, V1)∆(V, V2)∆(V, V1)

Compound ChangesElementary Changes

Fig. 13. Evaluation results for approaches based on elementary and compound operations

We can distinguish between application of operations, conflict examination and con-
flict resolution. On average, the number of elementary operations is three times the
number of compound operations which means that for application of operations the
user intervention triples (unless further optimizations are implemented for the elemen-
tary operations). The relation of conflicts for the elementary and compound operations
cannot be estimated. In our example, we obtain the number of conflicts as indicated in
the table. The user intervention required for conflict resolution depends on the support
given by the modeling tool. In [15] we give a detailed comparison of the required user
intervention for one conflict resolution example. The results of this (measured in work
units, see Figure 13) show that the user intervention again almost triples.

www.manaraa.com

Dependent and Conflicting Change Operations of Process Models 171

Our evaluation has also shown that compound operations can be used to realize ad-
vanced functionality such as change operation unification which is difficult to realize
for elementary operations, unless they are grouped again to compound operations. In
addition, compound operations enable to always create a connected and well-formed
model during conflict resolution whereas using elementary operations elements often
have to be reconnected manually.

7 Related Work

Mens et al. [21] analyze refactorings for structural conflicts using critical pair analy-
sis. They first express refactorings as graph transformations and then detect conflicts
using the AGG tool [25]. Hausmann et al. [10] analyze functional requirements in a
use-case driven software development approach for conflicts and dependencies. Further
approaches including critical pair analysis include work by Mens et al. [20] for trans-
formation dependency analysis. Lambers et al. [17] study rule sequences and formulate
sufficient criteria for their applicability. All of these approaches are similar to ours with
regards to the analysis of syntactic conflicts and dependencies and the formalization
using graph transformation. However, there are also differences: Firstly, we analyze
process model refactorings and elaborate on breaking up change sequences into inde-
pendent ones. Further, our analysis is performed after the changes have been made for
resolving conflicts whereas in the related work conflicts should be avoided up front.

Another area of related work is concerned with model composition and model ver-
sioning. Alanen and Porres [2] describe an algorithm how to compute elementary
change operations in a similar setting as ours. Kolovos et al. [13] describe the Epsilon
merging language which can be used to specify how models should be merged. Kelter
et al. [12] present a generic model differencing algorithm. All these approaches aim at
providing generic support for merging different models but do not focus on dependen-
cies and conflicts of change operations. In contrast to these approaches, we provide a
selection of conflict resolution techniques which is language-specific to process mod-
els, showing that there is a need for these domain-specific approach to dependency and
conflict detection. As such, our approach can be categorized as an operation-based, tree-
based and syntactic approach to software merging [19]. In the IBM Rational Software
Architect [18] or using the EMF Compare technology [7], dependencies and conflicts
between versions are computed based on elementary changes. The underlying conflict
analysis can be customized by self-defined algorithms which can make use of our ap-
proach for establishing a conflict and a dependency matrix.

Cicchetti et al. [4] have recently proposed a metamodel for representing conflicts
which can be used for specifying both syntactic as well as semantic conflicts. One key
difference to our work is that we do not specify conflicts for compound operations
but we compute them by using the critical pair approach. Finally, within the process
modeling community, Dijkman [6] has categorized differences of process models in the
context of process integration where models do not originate from a common source
model. Rinderle et al. [24] have studied disjoint and overlapping process model changes
in the context of the problem of migrating process instances but have not considered
dependencies and conflicts between change sequences and different forms of conflict
resolution.

www.manaraa.com

172 J.M. Küster, C. Gerth, and G. Engels

8 Conclusion and Future Work

When modeling in a distributed environment, changes performed on models can be
conflicting or sequentially dependent. In order to consolidate different models, conflict-
ing changes must be computed and manually resolved. In this paper, we have shown
how change operations can be analyzed for conflicts and dependencies. Based on this,
we presented an approach for breaking up a sequence of change operations into subse-
quences such that change operations from different subsequences are independent. Our
approach allows to make dependencies explicit and resolve conflicts in a versioning
scenario with special language-specific conflict resolution choices. Our evaluation has
shown that our approach leads to less user interaction than using elementary change
operations.

There are several directions for future work: Firstly, we would like to validate our
approach also for other behavioral models such as statecharts where compound change
operations need to be designed and then analyzed for conflicts and dependencies in a
similar way. Another area of future work is to take into account the semantics of process
models in order to be able to identify those syntactic conflicts which do not represent a
semantic conflict.

References

1. IBM WebSphere Business Modeler,
http://www.ibm.com/software/integration/wbimodeler/

2. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle, J., Booch,
G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

3. Bottoni, P., Schürr, A., Taentzer, G.: Efficient Parsing of Visual Languages based on Critical
Pair Analysis and Contextual Layered Graph Transformation. In: VL 2000, pp. 59–60. IEEE
Computer Society, Los Alamitos (2000)

4. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Model Conflicts in Distributed De-
velopment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS
2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg (2008)

5. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic Ap-
proaches to Graph Transformation Part I: Basic Concepts and Double Pushout Approach. In:
Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Foundations, vol. 1, pp. 163–245. World Scientific, Singapore (1997)

6. Dijkman, R.: A Classification of Differences between Similar Business Processes. In: EDOC
2007, pp. 37–50. IEEE Computer Society, Los Alamitos (2007)

7. Eclipse Foundation. EMF Compare, http://www.eclipse.org/modeling/
emft/?project=compare

8. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph trans-
formation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004.
LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)

9. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Briand, L.C., Wolf, A.L. (eds.) International Conference on Software Engineer-
ing, ISCE 2007, Workshop on the Future of Software Engineering, FOSE 2007, Minneapolis,
MN, USA, May 23-25, pp. 37–54 (2007)

10. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements
in a use case-driven approach: a static analysis technique based on graph transformation. In:
Proceedings ICSE 2002, pp. 105–115. ACM, New York (2002)

http://www.ibm.com/software/integration/wbimodeler/
http://www.eclipse.org/modeling/emft/?project=compare
http://www.eclipse.org/modeling/emft/?project=compare

www.manaraa.com

Dependent and Conflicting Change Operations of Process Models 173

11. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of Typed Attributed Graph Transforma-
tion. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS,
vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

12. Kelter, U., Wehren, J., Niere, J.: A Generic Difference Algorithm for UML Models. In:
Liggesmeyer, P., Pohl, K., Goedicke, M. (eds.) Software Engineering 2005, Fachtagung
des GI-Fachbereichs Softwaretechnik, 8.-11.3.2005 in Essen. LNI, vol. 64, pp. 105–116.
GI (2005)

13. Kolovos, D.S., Paige, R., Polack, F.: Merging Models with the Epsilon Merging Language
(EML). In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 215–229. Springer, Heidelberg (2006)

14. Küster, J.M.: Definition and validation of model transformations. Software and Systems
Modeling 5(3), 233–259 (2006)

15. Küster, J.M., Gerth, C., Engels, G.: Dependent and Conflicting Change Operations of Pro-
cess Models. IBM Research Report RZ 3727, IBM Zurich Research Laboratory (2009),
http://www.zurich.ibm.com/˜jku/Papers/rz3727.pdf

16. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and Resolving Process Model
Differences in the Absence of a Change Log. In: Dumas, M., Reichert, M. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008)

17. Lambers, L., Ehrig, H., Taentzer, G.: Sufficient Criteria for Applicability and Non-
Applicability of Rule Sequences. ECEASST 10 (2008)

18. Letkeman, K.: Comparing and merging UML models in IBM Rational Software Architect:
Part 3. A deeper understanding of model merging. IBM Developerworks (2005), http://
www.ibm.com/developerworks/rational/library/05/802_comp3/

19. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Trans. Software Eng. 28(5),
449–462 (2002)

20. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolving model inconsistencies
using transformation dependency analysis. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer, Heidelberg (2006)

21. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph transfor-
mation. Software and System Modeling 6(3), 269–285 (2007)

22. Object Management Group (OMG). The Unified Modeling Language 2.0 (2005)
23. Rinderle, S., Jurisch, M., Reichert, M.: On Deriving Net Change Information From Change

Logs - The DELTALAYER-Algorithm. In: Kemper, A., et al. (eds.) BTW 2007. LNI,
vol. 103, pp. 364–381. GI (2007)

24. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and Overlapping Process Changes: Chal-
lenges, Solutions, Applications. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS,
vol. 3290, pp. 101–120. Springer, Heidelberg (2004)

25. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation of
Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062,
pp. 446–453. Springer, Heidelberg (2004)

26. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow Analysis
for Business Process Models Through SESE Decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

27. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Features in
Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

http://www.zurich.ibm.com/~jku/Papers/rz3727.pdf
http://www.ibm.com/developerworks/rational/library/05/802_comp3/
http://www.ibm.com/developerworks/rational/library/05/802_comp3/

www.manaraa.com

Enabling Automated Traceability Maintenance
through the Upkeep of Traceability Relations

Patrick Mäder1, Orlena Gotel2, and Ilka Philippow1

1 Department of Software Systems
Ilmenau Technical University, Germany

{patrick.maeder,ilka.philippow}@tu-ilmenau.de
2 Department of Computer Science
Pace University, New York, USA

ogotel@pace.edu

Abstract. Traceability is demanded within mature development pro-
cesses and offers a wide range of advantages. Nevertheless, there are
deterrents to establishing traceability: it can be painstaking to achieve
initially and then subject to almost instantaneous decay. To be effective,
this is clearly an investment that should be retained. We therefore focus
on reducing the manual effort incurred in performing traceability main-
tenance tasks. We propose an approach to recognize those changes to
structural UML models that impact existing traceability relations and,
based upon this knowledge, we provide a mix of automated and semi-
automated strategies to update these relations. This paper provides tech-
nical details on the update process; it builds upon a previous publication
that details how triggers for these updates can be recognized in an au-
tomated manner. The overall approach is supported by a prototype tool
and empirical results on the effectiveness of tool-supported traceability
maintenance are provided.

Keywords: Automated traceability maintenance; Model-driven engi-
neering; Change management; Rule-based traceability; Traceability
update.

1 Introduction

Establishing traceability on a project can be time consuming. Even with the
support of emerging automated techniques there is still substantive manual work
involved [1]. Providing for traceability is intended to support change management
and many other software development tasks but, to leverage this investment, it
is necessary to have an accurate and ready to use set of traceability relations.
Traceability needs to be maintained while project artifacts are evolving.

By traceability maintenance, we refer to the modification and/or enhance-
ment of existing traceability relations after changes to artifacts to ensure their
continued correctness and accuracy. We highlighted a general approach for au-
tomated traceability maintenance in a previous paper [2]. The approach targets
model-driven software development using UML and comprises two key tasks:

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 174–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Enabling Automated Traceability Maintenance 175

(i) recognizing changes to models in terms of the broader development activity
being undertaken; and then (ii) updating the impacted traceability relations to
restore the traceability. The technical details underlying the automated recogni-
tion of development activities have been described in an earlier paper [3]. In this
companion paper, we focus on the technical details associated with traceability
upkeep and explain how the necessary updates are implemented.

The paper is organized as follows. In Section 2, we provide high-level details
about our approach and describe the context of software development for which it
has been developed initially. In Section 3, we describe our process for updating
existing traceability relations after the recognition of development activities.
We also describe how necessary updates can be propagated. In Section 4, we
discuss our initial validation through an experiment that compares the effort and
quality associated with tool-supported traceability maintenance, based upon the
approach described, versus manual efforts. We end the paper with a summary
of related and future work.

2 Motivation and Scope

Within this section, we discuss the problem of maintaining traceability relations
and present an overview of our solution to this typically manual task. We first
outline the context that we work within.

2.1 Model-Driven Software Development

With model-driven software development using the UML, a variable number of
abstraction layers (i.e., models) can be created to document a problem and its
solution, from the initial requirements through to the final implementation [4].
As the elements of these models describe the same system, there are benefits in
establishing explicit traceability relations between models to handle change. Few
industrial projects implement traceability in this fashion though, due to the per-
ceived and actual costs, and struggle to find the right balance as project artifacts
evolve [5]. Traceability maintenance can be a time consuming proposition.

2.2 Approach and Tool Support

Our approach is founded upon the following assumptions: (1) while evolving any
kind of UML model, it is possible to capture the elementary change actions and
salient information regarding the properties of the changed element; (2) one can
understand the intention of these elementary change actions within the context
of a chain of related change actions on an element and so determine the wider
development activity; and (3) knowledge of an intentional development activity
provides the information necessary for pre-existing traceability relations to be
updated following the changes. Our approach therefore records all the changes
to model elements and uses this information to find a match within a set of
predefined patterns of recurring development activities. A match will instigate
the requisite traceability update actions.

www.manaraa.com

176 P. Mäder, O. Gotel, and I. Philippow

Changes to a UML model can be classified into three elementary types: adding
new elements, deleting elements and modifying existing elements. All elemen-
tary changes that are not recognized as part of a wider development activity are
handled as new additions or deleted elements of the model. For new elements, we
support the developer in the creation of traceability relations. For deleted ele-
ments, we discard associated traceability relations if necessary. To restore overall
traceability within a set of interrelated models, we support the propagation of
required changes to models.

Currently, the approach is restricted to the analysis of changes to those models
described via structural UML diagrams (e.g., class, object, composite structure,
package and component diagrams). We focus on UML models as these are the
de facto standard for model-based software development and a wide range of
existing CASE tool support is provided. Furthermore, UML offers the possibility
of capturing the full range of software development artifact via its diagrams and
offers basic support for traceability relations as part of its meta-model [6]. We
are currently investigating how to extend the approach to support the behavioral
diagrams of the UML and also to handle additional types of model. More details
are described in earlier papers ([2], [3]) and the approach is supported by a
prototype tool called traceMAINTAINER [7].

3 Traceability Update Process

We restrict our focus to post-requirements traceability [8] and hence to the
consequent modeling activities and artifacts of the software development lifecy-
cle. The development process therefore consists of activities that incrementally
transform a requirements specification into the final implementation (e.g., the
platform specific model or source code) in a forward engineering manner. Each
of these activities is applied to or influenced by various input artifacts and cre-
ates new or improved output artifacts. Creating an explicit traceability relation
between these artifacts can capture these dependencies. We represent our trace-
ability relations as stereotyped dependency relationships, as defined by the UML
meta-model. The direction of a dependency relation points, by default, from the
dependent model element towards the independent model element. This direc-
tionality is intended to convey semantics and, in our case, to assist traceability
update and change propagation, but does not prevent bi-directional use or nav-
igation of the traceability relation itself.

3.1 Types of Model Changes

Focusing on post-requirements traceability relations and restricting directional-
ity, requirements can be treated as sinks of a directed acyclic graph, sourced
by elements of implementation, test and so on. The nodes of this graph rep-
resent related elements in different models and the arcs represent traceability
relations. Each related requirement spans such a tree. Changes to models that
impact traceability are the possible changes to the traceability graph and are
combinations of the elementary changes given in Section 2.2. In this section, we

www.manaraa.com

Enabling Automated Traceability Maintenance 177

New

(a) Adding a new element

Old

(b) Deleting an element

Old New

(c) Replacing an element

Whole Part 1 Part n…

(d) Splitting into several
parts

WholePart nPart 1 …

(e) Merging into one whole

Parent 2Parent 1

Child

Parent 2Parent 1

Child

?

(f) Moving into another
parent element

Fig. 1. Different change types with a focus on the necessary traceability updates

describe the types of change we distinguish at the model level and explain their
relation to the change of the traceability graph. Figure 1 depicts all the change
types and their traceability implications. Figure 2 depicts the underlying graph
that is the subject of the examples in the sub-sections below.

Adding a New Element. This change enhances a model by adding a new
element (see Figure 1(a)). While creating new traceability relations on the el-
ement, new nodes will be added to the traceability graphs of the associated
requirements.
Recognition of change: Each change to a model is retained in a buffer of our trace-
MAINTAINER tool until the wider development activity has been identified. If
we have not been able to assign the creation of a new model element (i.e., ADD
event) to a wider development activity, we treat the change as an enhancement of
the model. This means that the element is a new additional part of the model and
may require the creation of a new traceability relation. The necessity to establish
new traceability relations depends upon the project’s traceability information
model.
Required traceability update: After adding a new element, it might be nec-
essary to relate the element to independent elements that are the reason for
the addition. The traceability information model specifies what elements are al-
lowed/intended to be linked for a project, so it is possible to suggest or even
require the creation of one or more traceability relations on the new element. In
cases of ambiguity, we add a tag to such elements for the developer to exam-
ine when convenient. On exiting a CASE tool, a dialog is provided to alert the
user to any tagged elements that are yet to be connected within the traceability
graph. The dialog provides possible counterparts for new traceability relations
on the element according to the traceability information model. Also, the last
traced element of that type will be offered, as it is common that several proximal
changes belong to the implementation of the same new requirement. Recently
changed elements are more highly ranked and we are currently investigating the
possibility of using existing information retrieval techniques to provide a better
ranking of candidate relations to aid this task.

www.manaraa.com

178 P. Mäder, O. Gotel, and I. Philippow

RR

UUU

DDD D

III II

Model element
R – requirement,
U - use case,
D – design element,
I – implementation
 element

U
+ add

D
> merge

D D
< splitX – delete

X
X

U

D

I

X

D

� replace

D D

I II

� move
 part

?

?

Fig. 2. Example of two overlapping traceability graphs implementing two requirements

Impact on existing traceability: This change type has no impact on the existing
traceability relations but, if new elements are not related, the results of impact
analysis and change propagation are likely to be wrong.

Deleting an Element. This change arises when an element is removed from a
model without being replaced (see Figure 1(b)). While removing an element, its
relations will also be deleted, so nodes from the traceability graphs are removed.

Recognition of change: This is similar to ADD events. For each autonomous DEL
event that is removed from the traceMAINTAINER buffer we assume that the
intention behind the activity is to remove the element from the model.

Required traceability update: If an element has been removed it is necessary to
remove its traceability relations and examine the resulting impact. Using trace-
MAINTAINER, we store the traceability relations in an additional repository
with the advantage that we are able to find out about an element’s relations even
after its deletion, but with the necessity to delete these inconsistent relations
explicitly.

Impact on existing traceability: The deletion of inconsistent traceability rela-
tions is sufficient for relations to independent elements. For incoming links from
dependent elements, however, it is necessary to check whether these elements
are still valid and required or not. All these traceability relations will be kept
and receive a suspect tag and the deletion of the model element will be added as
the rationale for this status. Developers need to make decisions on suspect tags.

Replacing an Element. An element may be replaced by another element for
a number of reasons (see Figure 1(c)). It can be refined or generalized (e.g.,
replacing an association by an aggregation or composition and vice versa, or
replacing a class by an interface and vice versa). The element can also be con-
verted into a different type (e.g., converting a class into a component and vice
versa). Replacing an element requires restoring all former traceability relations
on the new element. This means that the nodes of the traceability graphs have
to be replaced.

Recognition of change: The replacement of an element is a wider development
activity comprised of several elementary changes. At a minimum, the deletion

www.manaraa.com

Enabling Automated Traceability Maintenance 179

of the old element and addition of the replacing element are present. We use
predefined rules and a rule engine within traceMAINTAINER to recognize such
development activities, as described in an earlier paper [3].

Required traceability update: In general, the update after a replacement activity
requires the restoration of all hanging traceability relations that were related to
the impacted model element on the newly created replacing element. Restoration
here means to delete all hanging relations of the old element and to recreate them
on the new element.
Impact on existing traceability: The replacement element may have an impact on
the elements of dependent models requiring an update. Our change propagation
mechanism is described in Section 3.2.

Spitting or Merging Elements. An element may be split into two or more
elements and two or more elements may be merged into one resulting element
(see Figures 1(d) and 1(e)). Examples for split and merge are the extraction
of a class’s attribute into its own class and vice versa, or the refinement of an
unspecified association into two unidirectional ones and vice versa. The splitting
or merging of elements requires the duplication of existing traceability relations
to these elements. This leads also to the split or merge of nodes within the
traceability graph.

Recognition of change: As with replacing an element, split and merge are wider
development activities comprised of several elementary changes. We provide rules
to recognize these development activities within the rule catalog of traceMAIN-
TAINER.

Required traceability update: As for the replacement of elements, there are many
ways within a typical CASE tool to get to the same result. This variety is
important for split activities since traceability update may require copying all
the traceability relations that still exist on the modified element to all additional
new elements, with or without the removal of the original. The situation is similar
for merging. One of the parts might be modified into the resulting whole or all
parts deleted prior to creating a new whole. The traceability update requires
consolidation of all traceability relations of all the parts on to the resulting
whole.

Impact on existing traceability: The impact is similar to replacing an element.
The split or merge may have an impact on related elements of dependent models
and require change propagation (Section 3.2).

Moving an Element. An element or one of its parts may be moved into
another context, so into a different element (see Figure 1(f)). Examples would
be moving a class into another package or moving an attribute into a different
class. Changing the context of an element may require copying or moving the
traceability relations on the element’s parent to the new parent. This change is
similar to adding/deleting a node to the traceability graph.

www.manaraa.com

180 P. Mäder, O. Gotel, and I. Philippow

Recognition of change: As discussed for replacing, splitting and merging, the
moving of an element is also a wider development activity and can be recognized
by predefined rules within traceMAINTAINER.

Required traceability update: It is possible to perform this change type in dif-
ferent ways. The element might be dragged and dropped in a project browser
from one element to another. In this case, no update of traceability relations on
the element itself is necessary. The element may also be deleted and recreated
at the new location. In this case, it is necessary to restore all the traceability
relations of the deleted element on the newly created element. The more chal-
lenging aspect of the traceability update after moving activities such as these is
that of changing the context. It might be the case that the moved element was
part of a related element. In such a case, it is likely that these relation(s) are
impacted by the move, so we provide a dialog to the developer that shows all
the traceability relations on the former parent element (old context) and offers
(for each relation) to delete it from the old parent and also to create it on the
new parent. This approach offers the developer the possibility of either leaving,
copying or moving each traceability relation.

Impact on existing traceability: This change type requires propagation, as per
Section 3.2.

3.2 Change Propagation

The main purpose of our work is to maintain the ongoing relevance of traceabil-
ity relations once they have been established and to reduce the manual effort
required to do this. It is for this reason that we distinguish between incoming
and outgoing relations on a model element. An outgoing relation points towards
an independent element; an incoming relation relates from a dependent element.
We use this information specifically for the propagation of changes between dif-
ferent models and/or different levels of abstraction. The related elements in such
a context usually have an ancestor/successor type of association. If the ancestor
element changes, it is likely that this has an impact on related dependent ele-
ments, but it should have no impact on the independent related elements. Rather
than make assumptions, the developer may be alerted to re-examine such im-
pact. We therefore propagate changes, by default, only on incoming traceability
relations to dependent elements. Nevertheless, the developer may also choose
to propagate only to independent elements or, in certain cases, to all related
elements. The possiblity to propagate changes also to independent elements can
be helpful in situations where a model is changed without changing the more
abstract model first so that both models stay aligned.

By propagating changes, we mean that we set all incoming and/or outgoing
traceability relations of a changed model element to a suspect status and require
the developer to manually inspect and, if necessary, resolve inconsistencies. We
propagate all changes to an element, even those that did not take part in a
wider development activity. This makes sense in a forward engineering process
where changes will be propagated to subsequent elements whose creation was

www.manaraa.com

Enabling Automated Traceability Maintenance 181

influenced by the changed element. To help resolve possible inconsistencies, we
capture the recognized change type as a tag on the traceability relation while
setting its status to suspect, as mentioned earlier.

We provide a mechanism to resolve relations whose state has been set to sus-
pect. If an element has been modified that has outgoing relations with suspect
status then we propose to remove that state after the change. This mechanism
reflects our assumption that a developer working on a model element will usu-
ally resolve all open issues and ensure consistency to the independent model.
Empirical studies are required to examine developers’ activities in more detail
to ensure the approach is reflective of practical needs.

4 Validation

In this section, we outline an experiment undertaken to explore the following
research questions regarding traceability upkeep. Note that validation of the
change recognition process has been described elsewhere [3].

Research Question 1. Does use of the traceMAINTAINER prototype (a tool
that implements the approach and updates traceability relations using auto-
mated and semi-automated strategies [7]) reduce the manual effort necessary
for maintaining traceability relations? While no manual effort would be a desir-
able target, we seek evidence of a reduction greater than the time necessary to
configure and learn how to interact with traceMAINTAINER to make its use
worthwhile.

Measure: The manual effort for traceability maintenance refers to the time
the developer spends on this task. It comprises: thinking about the maintenance
task (including recognizing it), navigating within the models and performing the
required changes. Measuring the time taken for these sub-tasks is problematic
given the lack of access to thought processes and the inter-weaved nature of
many tasks, so attempting to gain this data would interfere with the task itself.
As an indicator of effort, we record the number of performed changes to the set of
traceability relations, along with time spent responding to traceMAINTAINER
dialogs.

Research Question 2. Do the traceability updates performed by traceMAIN-
TAINER result in a set of traceability relations of comparable quality to those
when maintained purely manually?

Measure: Determining the quality of a set of traceability relations depends
upon having an agreed baseline. Three types of changes to the traceability re-
lations are then distinguished: changes that have been performed correctly ∆c

(according to the baseline); changes that have been performed incorrectly ∆i;
and changes that have not been performed ∆m. To be able to compare the qual-
ity and number of changes amongst subjects we compute two measures that
are commonly used to evaluate approaches dealing with uncertainty in recogni-
tion processes, precision and recall. Precision tells us about the quality of the

www.manaraa.com

182 P. Mäder, O. Gotel, and I. Philippow

performed changes, QP = ∆c/(∆c + ∆i) while recall tells us about the number
of necessary changes performed, QR = ∆c/(∆c + ∆m).

4.1 Experimental Set-Up

Hypothesis Formulation: Our experiment has one independent variable (the use
of traceMAINTAINER) and two treatments (tM, no−tM). It has five dependent
variables, on which treatments are compared:

Cm Number of manually performed changes to the set of traceability relations.
Ca Number of automated changes to the link-set.
CUI Number of user interactions with traceMAINTAINER.
QP Precision of performed changes (correct changes/(correct+incorrect changes)).
QR Recall of necessary changes (correct changes/(correct+missing changes)).

Null hypotheses:
Manual changes H0 : Cm(tM) ≥ Cm(no − tM)
Precision H0 : QP (tM) = QP (no − tM)
Recall H0 : QR(tM) = QR(no − tM)

Development Project: The experiment was conducted on the UML models for
a mail-order system, a completed project implemented in Java by the first au-
thor of this paper. The project artifacts include UML models on three levels
of abstraction: requirements, design and implementation. The models provide
information to a level of detail that one would expect at the end of the design
phase, including use case diagrams, interaction diagrams and class diagrams.
The model elements are listed in Table 1(a). The set of traceability relations for
this project (referred to as the project link-set) relates the three models and con-
sists of 214 traceability relations. The initial linking was undertaken according to
a traceability information model for the project. This states that only relations
between requirements/analysis and analysis/design are valid (i.e., no intra model
relations and no requirements/design). The relations are always directed from
the dependent to independent model. Use cases and classes have to be related
by at least one relation. Attributes, methods, components and packages can be
related to any other element as long as the rules above are followed.

Modeling Tasks: Three maintenance tasks were to be performed on these models
in a fixed order, adding new features of practical value that would impact large
parts of the system. Although the underlying source code was to be made avail-
able within the implementation model, the tasks only required changes to the
analysis and design models. It was estimated that it would take 2 to 3 hours to
complete all the tasks. Subjects were permitted to perform the tasks according
to their ideas and experiences to capture a realistic spread of different solutions
to the same problem. This means that the solutions are not comparable per se.

The tasks comprised: (1) Enhance the system’s functionality to distinguish
private and business customers and to handle different properties for them.
Enhance it also to handle foreign suppliers (including currencies and taxes).

www.manaraa.com

Enabling Automated Traceability Maintenance 183

Table 1. Development project and subject information

(a) Project models and elements

RQs Analysis Design
Use case diagrams 3
Class diagrams 1 6 6
Package diagrams 1 1
Activity diagrams 7
State charts 3
Sequence diagrams 5
Package 5 5
Class 41 63
Attribute 73 150
Method 124 280

(b) Prior experience of subjects

Mean SD
Programming [years] 11,79 7,58
Languages [count] 4,06 1,70
Projects [count] 2,47 1,29
Projects [days] 448,88 397,20
UML [1-4] 2,80 0,91
CASE tools [1-4] 3,16 0,85
Sparx EA [1-4] 2,81 0,69
Traceability [1-4] 2,05 0,75
(Scale [1-4] – 1 is low and 4 is high)

(2) Convert two parts of the system into separate components. (3)Enhance the
functionality to categorize different products.

Subjects: The subjects comprised 16 computer science students with a wide range
of experience in UML and model-based software engineering. All the students
were taking a course on software quality and were either in the 4th or 5th year
of their diploma (Masters comparable). The subjects were partitioned into two
groups of 8 (tM and no− tM), to equally distribute expertise based upon prior
experience (see Table 1(b)).

Experimental Procedure:

1. All subjects completed a questionnaire to capture their background and ex-
perience. The answers were used to divide the subjects into two groups.

2. All subjects were asked to install the CASE tool to be used (Sparx Enterprise
Architect) and to follow a tutorial one week prior to the experiment.

3. All subjects completed a second questionnaire to capture the effort they
spent on learning the CASE tool.

4. All subjects spent 30 minutes on a lesson explaining the general structure
of the project’s UML models and the purpose of the system. The subjects
were introduced to the advantages and problems of traceability, the project’s
traceability information model and how to maintain traceability relations
manually within the CASE tool. The subjects of the tM group also received
an introduction to the purpose and required responses to requests for user
interactions when using traceMAINTAINER.

5. All subjects received the description of the three tasks along with a question-
naire that would be used to gather information about the work completed
on each task. Only the subjects of the no− tM group were asked to maintain
the traceability relations along with undertaking the modeling activities.

6. After 120 minutes, the subjects of the tM group were asked to stop the
modeling work and to manually maintain the traceability relations.

7. After 150 minutes, all the subjects stopped work.

www.manaraa.com

184 P. Mäder, O. Gotel, and I. Philippow

8. Each subject participated in a short final interview to gather data on the
perceived usefulness of traceability to the tasks, the problems they experi-
enced with traceability maintenance and suggestions they had on improving
tool support for traceability.

Data Gathering: Data were gathered via the three questionnaires, as described
above. For both groups, a log file was created by traceMAINTAINER containing
all the elementary changes performed by the subject, all changes to the link-set
and information about how often the subject navigated the models using trace-
ability relations. For the tM group, a log of all recognized development activities,
the user decisions on interactions and all automatically performed traceability
updates was also created. The models of all the subjects were available for anal-
ysis and the participants of the tM group were asked to save their model before
the 30 minute manual traceability maintenance period.

4.2 Results

Univariate analyses of the dependent variables were performed to test the hy-
potheses both individually for each task and across all tasks. For all dependent
variables Cm, Ca, CUI , QP and QR, two-sample t-tests were performed. The
level of significance for the hypotheses tests was set to α = 0.05. We provide
p-values in the t-test columns of Table 2(a) and 2(b). We had to exclude one
subject from each group from the analysis, because they did not provide a min-
imal solution to each modelling task. This precondition was required in order to
compare results between all subjects.

Table 2. Descriptive statistics

(a) Change actions and interactions

Task Var Treat Mean SD % diff t-test

All
Cm

no-tM 36.3 12.8
-82% 0.00

tM 6.6 3.8
Ca tM 59.6 34.7
UI tM 9.0 4.1

1
Cm

no-tM 18.6 9.5
-87% 0.00tM 2.4 1.8

Ca tM 36.2 23.9
UI tM 2.0 2.0

2
Cm

no-tM 7.7 4.9 -90% 0.01
tM 0.8 1.8

Ca tM 13.0 3.3
UI tM 6.2 4.9

3
Cm

no-tM 10.0 4.7
-66% 0.04

tM 3.4 4.7
Ca tM 12.4 14
UI tM 0.8 0.8

(b) Precision and recall of changes

Task Var Treat Mean SD % diff t-test

All
QP

no-tM 79.5 25.7
21% 0.19

tM 95.9 4.3

QR
no-tM 71.3 27.6

11% 0.61tM 78.8 19.0

1
QP

no-tM 78.9 36.5
21% 0.34tM 95.7 6.0

QR
no-tM 78.0 36.3 -6% 0.82

tM 73.3 32.7

2
QP

no-tM 83.3 31.0 19% 0.29
tM 98.9 2.5

QR
no-tM 59.5 35.3

51% 0.1
tM 90.0 14.1

3
QP

no-tM 81.6 37.5
17% 0.44

tM 95.6 6.5

QR
no-tM 76.2 35.8

-11% 0.67tM 67.8 27.3

www.manaraa.com

Enabling Automated Traceability Maintenance 185

4.3 Discussion

Research Question 1. When looking at the number of manual changes Cm

to the link-set over the three tasks, the tM group performed far fewer changes
(82%) than the no − tM group (see Table 2(a)). This difference is statisti-
cally significant. However, it is evident that the no − tM group performed only
half as many changes (36.3) than the tM group’s combined total of manual
and automated changes (6.6+59.6=66.2). There are two reasons for this. First,
traceMAINTAINER recognizes small incremental change activities and updates
traceability relations immediately (in the background) after recognition. This
means that the link-set reflects each detour of the developer, in contrast to man-
ual maintenance where the update is typically performed after completing the
whole task, resulting in fewer changes. Second, manual maintainers often chose
to perform only the minimum required changes to comply with the traceability
information model.

The time to undertake a manual change could not be measured precisely
because it is not clear when the developer starts to think about a change task.
To estimate this indirectly, we counted the manually created relations, manually
deleted relations and user interactions. Based upon several measurements with
different subjects’ data, we correlated the comparable effort of the three direct
measures as follows: Tcreate ≈ 2 ∗ Tdelete ≈ 2 ∗ TUI . Using this, we compared
no-tM (Tcreate + 0.5 ∗ Tdelete) and tM (Tcreate + 0.5 ∗ Tdelete + 0.5 ∗ TUI) to gain
an approximation of the saved effort by using our approach, as shown in Table 3.

Table 3. Manual effort of the tM group, compared with the non − tM group

Task All 1 2 3
Approx. effort tM -71% -82% -48% -67%

Research Question 2. The values of QP and QR, information about the pre-
cision and recall of changes to the link-set (see Table 2(b)), show that the tM
group reached a value of over 95% precision for all tasks, with a low standard
deviation, 21% higher than the value for the no − tM group. Among all the
changes performed by traceMAINTAINER we found no incorrect ones; all the
incorrect changes within the tM group were manually performed changes. The
values for recall are lower than those for precision and, except for Task 2, compa-
rable between both groups. Values of recall lower than 100% indicate that more
changes to the link-set would have been necessary. This means that the approach
performs updates with high quality (high precision), but does not perform all
the necessary updates. However, any differences between the two groups for both
measures are not statistically significant. The quality of the changes performed
by both groups is comparable.

4.4 Threats to Validity

External Validity: From a task perspective, the reported experiment is realistic.
We had young professionals working on a real project, using commercial tools

www.manaraa.com

186 P. Mäder, O. Gotel, and I. Philippow

and implementing demanding tasks. Nevertheless, it is hard to draw conclusions
to a wider population without more studies. The results reflect more a tendency
that shows the potential of our approach. There are threats associated with
the short time the subjects spent on the experiment given the task complexity.
However, we did not want to set trivial tasks with obvious changes. A high-level
task description enabled there to be a variety of ways to solve the problem, but
demanded effort to analyze and evaluate the data (55k lines of log messages and
16 different models). Without sophisticated techniques, it would be complicated
to run an experiment lasting much longer.

Internal Validity: Internal validity is concerned with establishing a causal rela-
tionship, here between the use of traceMAINTAINER and the number of manual
changes to the link-set. Subjects were randomly assigned to the groups to balance
expertise, but in order to have comparable results among participants we had
to exclude two subjects from the experiment since they did not solve the mod-
eling tasks sufficiently. The potential influence of the facilitators was addressed
by providing an initial briefing and task description in written form only. The
difference in the material between groups was marginal, the addition being how
to react on user interaction for the tM group. None of the subjects had any prior
knowledge about the approach nor did they know the experimental goals.

Construct Validity: Construct validity refers to having established correct oper-
ational measures for the constructs being studied. To investigate the effect of our
approach on the effort for maintaining traceability relations after the evolution
of related UML models it is necessary to use the UML as intended. The UML
offers an open set of description techniques with many ways to apply them.
In this experiment, we used six types of diagram at different levels of detail,
our subjects had state-of-the-art education in UML development and we used
a widely distributed CASE tool. From the debriefing interview, we learned that
almost all the subjects felt immediately familiar with the tool after their prior
tutorial. The examination of the resulting models showed that, except for two
cases (explained above), all the subjects were able to edit and enhance the UML
models in a manner comparable to industrial practice. To investigate the qual-
ity of changes to the link-set, the main problem with comparing traceability is
the lack of an agreed standard. We therefore provided a traceability information
model to give guidance on how to establish traceability for the project. We did
the initial creation of traceability relations according to the model and required
our subjects to do likewise. In order to gain comparable results, we made further
restrictions as to the minimal number and direction of relations (see Section 4.1).

5 Related Work

The goal of our approach is to support the maintenance of already established
traceability relations. We are not concerned with creating an initial set of rela-
tions, which is mostly the domain of techniques based on information retrieval
and data mining, and are concerned more with incremental additions to an

www.manaraa.com

Enabling Automated Traceability Maintenance 187

evolving set. There is related work on maintaining traceability relations, sup-
porting inconsistency management and change propagation between models.

Maletic et al. [9] describe an XML-based approach to support the evolution of
traceability relations between models. The authors describe a traceability graph
and its representation in XML, independent of specific models or tools. They
discuss the issue of evolution and propose to evolve traceability along with the
models by detecting syntactic changes at the same level and type as the relations.
However, the authors do not discuss how to detect these changes in depth nor
how to update the impacted traceability relations.

Murta et al. [10] describe an approach called ArchTrace that supports the evo-
lution of traceability relations between architecture and implementation. The use
of xADL for the description of architectures and Subversion for the versioning
of source code is required. The authors trigger a set of eight policies on com-
mitting a new version of an artifact. These policies mostly ensure the update
of existing traceability relations on artifacts to new versions within the version
control system and further restrict the creation of new relations on old artifacts.
The authors do not discuss the recognition of structural changes to supported
models nor how to update relations in this case.

Mens et al. [11] describe an extension to the UML meta-model to support
the versioning and evolution of UML models. The authors classify possible in-
consistencies of UML design models and provide rules to detect and resolve
these. They transform the models into a supported format, apply their rules
and suggest model refactorings based on the results. While the authors discuss
the necessity for traceability management and change propagation while UML
models are evolving, they provide no support for this.

Cleland-Huang et al. [12] present an approach called event-based traceability
(EBT). The authors link requirements and other artifacts of the development
process through publish-subscribe relationships. Changes to requirements are
categorized by seven kinds and events are raised according to kind. Events are
published to an event server that sends notifications about the change to sub-
scribers. Change is propagated through sending messages to stakeholders. The
notification contains information to support the update process of the dependent
artifacts. This facilitates manual maintenance. The EBT approach is similar to
our approach, though the authors mainly focus on requirements models and do
not discuss how to detect and resolve changes to additional UML models.

Olsson and Grundy [13] describe an approach where they extract key infor-
mation from different artifacts (requirements specifications, use cases and tests)
into abstracted representational models. The developer can then create explicit
relations between the abstract elements. Some implicit relations can be defined
automatically (e.g., consistently named users within different artifacts). Through
this mechanism, changes can be propagated. Some changes can be resolved auto-
matically (e.g., changing the name of a user). For others, developers are informed
so they can take action. Like Olsson and Grundy, we also propagate the change
of a traced model element and maintain the traceability relations of evolving

www.manaraa.com

188 P. Mäder, O. Gotel, and I. Philippow

model elements, in some cases automatically and in others with limited developer
interaction. In contrast, we do not need to extract the data from the models first
and provide the propagated information about change within the model.

Grundy et al. [14] review existing approaches to handle inconsistencies, be-
tween analysis, design and implementation specifications. They also outline re-
quirements for effective inconsistency management and provide exemplars to
demonstrate and evaluate their approach. We tried to follow their requirements
with our approach, so the necessity to propagate changes immediately as they
occur and mechanisms to inform the developer about inconsistencies.

Traceability is supported by many commercial requirements management
tools, enabling the tracing of requirements to other artifacts in the software
development life cycle. One example, IBM’s RequisitePro, allows developers to
relate requirements kept within the tool to other tools in the product suite, such
as Rational Software Modeler. While these tools support UML explicitly, there
is limited support for the automated creation or maintenance of traceability re-
lations at fine-grain levels. To integrate the approach of this paper, it would be
necessary to write a tool-specific adapter to generate the necessary events, and
to be able to create and delete the traceability relations. We have found this to
take from several days to two weeks based on the particular tool.

6 Conclusions and Future Work

This paper addresses the problem of traceability decay by presenting an approach
for the maintenance of traceability relations. The approach is currently limited
in scope such that it focuses on restoring traceability following changes to related
elements within structural UML models while undergoing model-driven software
development. The paper provides a set of potential change types and described
the necessary update to existing traceability relations that each type demands.
The identification of these change types becomes possible by applying devel-
opment activity recognition rules to elementary change events captured while
working within a CASE tool [3] and the approach is supported by a prototype
tool called traceMAINTAINER [7].

By recognizing each elementary change to a model, it is much easier to solve
small incremental problems associated with maintaining traceability. Through
our rules and identified change types, this is what we do and we achieve encourag-
ing results. We have conducted preliminary studies to examine the effectiveness
of the traceability update process in practice, in terms of effort saved and qual-
ity of the end results. We are currently starting a larger longitudinal industrial
case study to evaluate our work further. Within that study we plan to gain
more statistical data on the cost/benefit trade-off of the approach for practical
application.

Acknowledgments. This work is part funded by DFG grant Ph49/7-1. The au-
thors thank Johannes Langguth for his work in preparing and analyzing the
experiment and all the students who were involved.

www.manaraa.com

Enabling Automated Traceability Maintenance 189

References

1. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation
for requirements tracing: The study of methods. IEEE TSE 32(1), 4–19 (2006)

2. Mäder, P., Gotel, O., Philippow, I.: Rule-based maintenance of post-requirements
traceability relations. In: Proc. 16th Int’l Requirements Eng. Conf., Barcelona,
Spain (September 2008)

3. Mäder, P., Gotel, O., Philippow, I.: Enabling automated traceability maintenance
by recognizing development activities applied to models. In: Proc. 23rd Int’l Conf.
on Automated Software Engineering ASE, L’Aquila, Italy (September 2008)

4. Lano, K.: Advanced systems design with Java, UML, and MDA. Elsevier
Butterworth-Heinemann, Amsterdam (2005)

5. Egyed, A., Grünbacher, P., Heindl, M., Biffl, S.: Value-based requirements trace-
ability: Lessons learned. In: Proc. 15th Int’l Req. Eng. Conf., pp. 115–118 (2007)

6. Object Management Group Framingham, Massachusetts: OMG Unified Modeling
Language Specification (Version 2.1.2) (November 2007)

7. Mäder, P., Gotel, O., Kuschke, T., Philippow, I.: traceMaintainer – Automated
Traceability Maintenance. In: Proc. 16th Int’l Requirements Eng. Conf., Barcelona,
Spain (September 2008)

8. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability
problem. In: First Int’l Conf. on Req. Eng. ICRE, pp. 94–101. IEEE CS Press, Los
Alamitos (1994)

9. Maletic, J.I., Collard, M.L., Simoes, B.: An xml based approach to support the
evolution of model-to-model traceability links. In: Proc. TEFSE 2005, pp. 67–72.
ACM, New York (2005)

10. Murta, L.G.P., van der Hoek, A., Werner, C.M.L.: Archtrace: Policy-based sup-
port for managing evolving architecture-to-implementation traceability links. In:
21st Int’l Conf. on Automated Software Engineering ASE, September, pp. 135–144
(2006)

11. Mens, T., van der Straeten, R., Simmonds, J.: A framework for managing consis-
tency of evolving UML models. In: Yang, H. (ed.) Software Evolution with UML
and XML, pp. 1–30. IGI Publishing, Hershey (2005)

12. Cleland-Huang, J., Chang, C.K., Christensen, M.J.: Event-based traceability for
managing evolutionary change. IEEE TSE 29(9), 796–810 (2003)

13. Olsson, T., Grundy, J.: Supporting traceability and inconsistency management
between software artefacts. In: Int’l Conf. Software Eng. and Appl. (November
2002)

14. Grundy, J.C., Hosking, J.G., Mugridge, W.B.: Inconsistency management for
multiple-view software development environments. IEEE TSE 24(11), 960–981
(1998)

www.manaraa.com

Temporal Extensions of OCL Revisited

Michael Soden and Hajo Eichler

Department of Computer Science, Humboldt University Berlin
Unter den Linden 6, 10099 Berlin, Germany

{soden,eichler}@ikv.de

Abstract. Temporal extensions of OCL have been proposed in the lit-
erature in order to express dynamic system properties of UML models.
This paper reviews previous work on Temporal OCL based on dynamic,
state-oriented behaviour specifications and gives a more general defini-
tion for Linear Temporal OCL (LT-OCL) for languages that are defined
using MOF metamodels in conjunction with operational semantics. The
definitions presented in this paper intend to pave the way for precise
semantics of temporal OCL constraints of languages defined by other
metamodels than UML.

1 Introduction

The Object Constraint Language (OCL) has become a de-facto standard for
expressing static constraints over object-oriented UML design models [1]. In
conjunction with the formalization of the dynamic semantics of UML, there
have been proposals to extend OCL towards temporal logic to precisely specify
dynamic properties of model behaviour. Driven by the need of various domains
that adopt UML as a specification language, several variants of ’Temporal OCL’
have been studied based on state-oriented dynamic semantics of UML mod-
els [2][3][4][5]. A general problem, however, is the missing precise semantics of
UML in conjunction with its semantic variation points which leads in practice
to assumptions on the platform that will execute the modelled system. For this
reason, formalizations of OCL including temporal extensions are usually bound
to a fixed notion of system states. Moreover, application of OCL in the context of
domain specific languages (DSLs) that are defined over other metamodels than
UML including their own behavioural semantics are not considered.

This paper explores an approach to define linear temporal constraints for lan-
guages defined over MOF metamodels in conjunction with operational semantics.
We use the M3Actions [6][7] to give models executable behaviour through action
semantics and define the interpretation of Linear Temporal OCL (LT-OCL) for-
mulas over states induced by these definitions. For this purpose, the Essential
OCL (EOCL) subset of the standard [1] is extended in a similar way than previ-
ous work from Ziemann et al. [2]. Thus, the semantics of temporal constraints can
be applied for DSLs solely by a language metamodel including behaviour defini-
tion. We demonstrate the approach along with a timed state-machine language

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 190–205, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

Temporal Extensions of OCL Revisited 191

that models the steam-boiler control system [8]. Originated from the Dagstuhl-
Meeting in 1995, the system specification has become quickly a widely known
reference example in the area of safety-critical systems and verification methods.

The remainder of this paper is organized as follows. Section 2 introduces the
concepts of Linear Temporal Logic in general as basis for assessment of our
and related work discussed in section 5. Syntax and semantics of LT-OCL are
introduced in section 3 along with an overview on the action semantics used in
subsection 3.2. Afterwards, the approach is applied to an example in section 4
before section 6 draws some conclusions and summarizes future work.

2 Linear Temporal Logic

Linear Temporal Logic (LTL) is usually defined as an extension of proposi-
tional logic by temporal operators. Semantics are given as interpretation over
sequences of states, typically in terms of Kripke structures that specify in which
states propositions hold [9]. In the extent of this paper, we have to deal with
an enhanced variant of many-sorted (first-order) predicate logic with temporal
operators which we will briefly introduce in this section.

The various definitions of temporal predicate calculi found in literature can be
roughly classified based on their access to time [10]. While explicit time access
introduces time as a special sort (commonly with additional strict monotonic
property), implicit modelling of time introduces a set of temporal operators.
In order to express future directed1 statements, commonly used operators are
always (denoted ′�′), next (denoted ′©′), until (denoted ′U ′) and eventually
(denoted ′♦′). For example, one can express a simple liveness property of a
system ’all messages being sent are received’ by:

�(∀msg(send(msg) → ♦(receive(msg)))) (1)

From a syntactical point of view, this expression assumes that there exists some
predicates send and receive over a sort that is compatible with variable msg.
Note how the variable msg is bound by the ∀ quantifier and identifies a set of
objects which — whenever the predicate send is true — must fulfill the predicate
receive some time later. A more strict message receival would be specified by
the formula:

�(∀msg(send(msg) → ©(receive(msg)))) (2)

Due to the next operator, an immediate receival of messages is required in the
next state.

For the precise semantics of such formulas, a model is required over which
formulas are interpreted and the notion of truth is defined. Traditionally, Kripke
structures provide a universe of states, transitions and a labeling function that
specifies which propositions hold when. The temporal semantics at its core are
defined by evaluation of formulas over state sequences which are paths through

1 in opposite to past directed operators, cf. also to the discussion in section 5.

www.manaraa.com

192 M. Soden and H. Eichler

the Kripke structure. For our purpose, we define the semantics by an evaluation
over state sequences π = s0, s1, s2, . . . directly. Thereby, all functions/predicates
are interpreted on a (set of) states as specified by the temporal operators. For
the example (1), the state sequence

s0 : send(m1) �� s1 : send(m2) �� s2 : receive(m2) �� s3 : receive(m1)

is a valid model since all messages are received even though in a different order.
However, this sequence is not a model for formula 2. We refrain from a formal
definition of syntax and semantics for this example and call upon the intuition
of the reader. Instead, we’ll focus on the definitions of temporal operators for
OCL in the next section.

3 Linear Temporal OCL

This section defines syntax and semantics of LT-OCL expressions. Conceptually,
we introduce three new unary operators next, always and eventually plus a
binary operator until. Intuitively, they correspond to the temporal operators
’©’, ’�’, ’♦’ and ’U ’ as outlined in section 2. Since formulas of LT-OCL must be
interpreted in the context of a metamodel and its dynamic behaviour specified
by action semantics, we define the semantics over a generic trace metamodel
that conceptually replaces the state sequences.

3.1 Syntax Extensions for Temporal Operators

The concrete syntax of OCL is defined by means of an attributed EBNF grammar
including a mapping to the abstract syntax defined as MOF metamodel (cf.
section 9 of [1]). Thus, we define the extensions of LT-OCL by extending the
grammar rules and the abstract syntax metamodel in the following.

Fig. 1. Abstract Syntax extensions for temporal operators

www.manaraa.com

Temporal Extensions of OCL Revisited 193

For the four temporal operators, the OCL metamodel extension is shown
in figure 1 (extensions marked grey). The changes to the OCL grammar are as
follows. On top level, we add a new production rule [G] for temporal expressions:

[A] OclExpressionCS ::= PropertyCallExpCS
[B] OclExpressionCS ::= VariableExpCS
[C] OclExpressionCS ::= LiteralExpCS
[D] OclExpressionCS ::= LetExpCS
-- [E] OclExpressionCS ::= OclMessageExpCS
-- not in Essential OCL
[F] OclExpressionCS ::= IfExpCS
[G] OclExpressionCS ::= NextExpCS | AlwaysExpCS |

EventuallyExpCS | UntilExpCS

The new four non-terminals are then defined by the production rules:

[A] NextExpCS ::= ’next’ ’(’ OclExpressionCS ’)’
[B] AlwaysExpCS ::= ’always’ ’(’ OclExpressionCS ’)’
[C] EventuallyExpCS ::= ’eventually’ ’(’ OclExpressionCS ’)’
[D] UntilExpCS ::= ’(’ OclExpressionCS[1] ’)’ ’until’

’(’ OclExpressionCS[2] ’)’

Furthermore, the OCL specification uses a synthesised attribute ast to provide
access to the abstract syntax objects returned by each rule. In that way, the
AS-tree construction and mapping is defined. To exemplify this mechanism, we
define the type and tree assignment for NextExpCS and UntilExpCS:

NextExpCS.ast : NextExp
[A] NextExpCS.ast.expression = OclExpressionCS.ast
[...]
UntilExpCS.ast : UntilExp
[D] UntilExpCS.ast.leftExpression = OclExpressionCS[1].ast
[D] UntilExpCS.ast.expression = OclExpression[2].ast

Intuitively, as can be seen from the definitions above, the ast instantiates the
metamodel classes NextExp, UntilExp, etc. and the property expression is set
to the constructed value for OclExpressionCS. For the until expression, the
left hand side is assigned to leftExpression while the right hand side is stored
as expression. As additional constraint for all four temporal expressions, we
have to limit expressions to type Boolean:

NextExpCS.ast.expression.type.name = ’Boolean’
AlwaysExpCS.ast.expression.type.name = ’Boolean’
EventuallyExpCS.ast.expression.type.name = ’Boolean’
UntilExpCS.ast.leftExpression.type.name = ’Boolean’

3.2 Semantics of LT-OCL

As outlined in section 1, the semantics of LT-OCL expressions is dependent on
a concrete metamodel and its operational semantics. While metamodels specify

www.manaraa.com

194 M. Soden and H. Eichler

how models are structured, operational semantics define the models’ behaviour
and as a direct consequence the notion of states of the models. For this purpose,
we use the M3Actions framework that supports the definition of action semantics
for MOF metamodels [11]. The framework has been successfully applied to model
a number of languages including aspects of SDL, ASM, C# or Petri-Nets ([6][7]).
The current implementation for EMF is on the verge of becoming the basis for
the Model Execution Framework (MXF) of Eclipse [12].

M3Action framework. The core of the M3Actions framework is the MAction
language that defines behaviour with a graphical syntax similar to UML Activ-
ities/Actions, but with a precise update semantic defined for instances of MOF
metamodels [13]. Action flows specifying the operational behaviour are hooked
into a metamodel as specific MOperations. Elementary actions include for ex-
ample an OCL query action to navigate the model, an assign action to update
properties, a create action to instantiate a meta-class, an invocation action to
trigger other flows, and so on.

Flows are always executed in the context of a MThread. While parallel execu-
tion is supported through forking at invocation actions, we explicitly constrain
the operational semantics to be ’single-threaded’ for LT-OCL2.

One key aspect in the M3Actions architecture is the differentiation of static
model structures (abstract syntax of a language) from its evolving runtime con-
figurations: the runtime model. Runtime models are considered to be instances
of the abstract syntax which can be expressed by an explicit instanceOf rela-
tion between meta-classes. We will explain more details upon the language and
architecture along with the example of the steam-boiler application in section 4.

Fig. 2. Generic trace metamodel defining model changes

State Sequences by Execution Traces. For the design of a behavioural
language the notion of observable states is key when it comes to the analysis
of execution runs. We define the notion of states for an executed model as the
states of its runtime model. Since actions change the runtime model, a new state
is reached whenever an action (that updates the model) has finished execution.

States manifest themselves in execution traces, which can be recorded as in-
stances of a generic trace metamodel shown in figure 2. The structure of a trace
consists of an instance of class Trace as top level element created per running
2 cf. also to the discussion on parallelism in section 5.1.

www.manaraa.com

Temporal Extensions of OCL Revisited 195

MThread (cf. section 3.2) and a contained list of changes. Such Change objects
in turn consist of ObjectChanges and FeatureChanges holding the delta values
of a change. Since every object is tagged by a unique (simulation) time stamp
number instant (cp. class AbstractChange), all manipulations are globally or-
dered. Although the trace contains only changes, one can consider each change
to define a new state3.

In most cases, observable states of the designed language do not match the
’micro-states’ of the operational actions. In order to control the creation of states
in the trace, MActions provide two concepts:

1. Atomic Groups combine multiple actions into a new atomic one that is pre-
vented from being interrupted. They produce only a single change-object in
the trace4.

2. State Generating Transitions (SGTs) provide a way to determine when a
new state is reached. In other words, traversing an SGT force all previous
changes to be dumped into the trace.

From the application of these concepts it follows that the recorded traces reflect
the observable states of the executed model. In other words, to create or restore
a state explicitly, one has to apply all changes in the order given by instant to
the initial (empty) runtime model5. In the following, we refer to these states as
the states induced by a sequence of changes recorded in an execution trace.

Definition 1 (Induced States). Let γ0, . . . , γn(n ∈ N) be the globally ordered
sequence of instances of class Change, where n denotes the value of attribute
instant. We denote an object model σi(γi) with i ≤ n to be the induced state
of γi constructed by applying all changes γ0...γi to the empty runtime model.
Synonymously, we refer to this constructed runtime model of an induced state
as the snapshot at instant i.

Yet we have an intuitive notion of system states as models in the sense of MOF’s
instance model. In order to define the semantics for LT-OCL, we require a more
formal definition of this object model. In the OCL standard, the semantics are
defined by a mapping of the abstract syntax onto a domain model, both expressed
in UML (cf. [1], section 10). We follow the formal approach included as (non-
normative) Appendix A of the OCL standard and reuse those definitions of the
object model consisting of:

M = (Class, Attc, Opc, Assoc, associates, roles, multiplicities,≺) (3)

where Class is a set of classes, Attc the set of operation signatures that asso-
ciate a class c to its attributes, Opc the operations of class c, Assoc the set of
association names, associates a mapping of association names to participating

3 we will return to the beneficial value of knowing the change in section 5.1.
4 except if nested actions are connected by SGTs.
5 more precisely, we could define a transformation that derives a state sequence from

this change-based trace model.

www.manaraa.com

196 M. Soden and H. Eichler

classes, roles and multiplicities the mapping of role names and multiplicities to
association ends and ≺ a function defining the generalization hierarchy of the
classes (cp. [1], appendix A, section A.1.1.7). Furthermore, the standard defines
a system state for a model as structure σ(M) as follows:

σ(M) = (σCLASS , σATT , σASSOC) (4)

This tuple consists of the set of objects σCLASS, a value to attribute mapping
σATT and a finite set σASSOC containing the links between objects6. In combina-
tion with definition 1, we interpret all runtime snapshots σi(γi) in the following
as objects reflected in a structure σi(M) at moment in time i.

Finally, we reuse the syntactical expressions Exprt (set of all OCL terms),
assuming the extensions introduced in section 3.1 have been applied. Hence, an
interpretation of expressions is performed in an extended evaluation environment
ε = (π, β, i) consisting of a sequence of states π, a variable projection β : V art ×
N → I(t) that derives the values from a state at an instant of time i. For
readability, we abbreviate ε = (π, β, i) as εi if π and β are clear from the context.

Definition 2 (Semantics of LT-OCL expressions). Let π = σ0, . . . , σn

(n ∈ N) be a sequence of induced states, e ∈ Exprt an LT-OCL expression
and Env the set of environments ε = (π, β, i). Then evaluation of a LT-OCL
expression is defined by the function I[[e]] : Env → I(t) as follows:

i. Standard OCL expressions evaluate as described in the semantics part of
[1], Appendix A, Definition A.14 - A.30, 7 with the enhanced environment
I[[e]](ε) that carries the time instant i. For example, this implies:
(1) Variable assignment retrieves the value from the environment at instant

i: I[[v]](ε) = β(v, i)
(2) Iterator expressions iterate over a consistent collection that was retrieved

at instant i
(3) Evaluation of operation call expressions are considered to take no time

and be side-effect free. Hence, evaluation is consistent at instant i, etc.
ii. ’next’ expressions evaluate in the next state of the path:

I[[next(e)]](ε) =

⎧⎨
⎩

true if I[[e]](εi+1) = true
false if I[[e]](εi+1) = false
⊥ otherwise

iii. ’until’ force the expression e1 evaluate to true in all states until the second
expression e2 becomes true:

I [[(e1) until (e2)]](ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

true iff ∃k.i < k so that ∀i ≤ u < k : I [[e1]](εu) = true
and ∀j ≥ k : I [[e2]](εj) = true

false iff for one of i ≤ u < k I [[e1]](εu) = false or
I [[e2]](εj) = false

⊥ otherwise

6 cp. [1], appendix A, Definition A.12 (System State).
7 we refrain from repeating the altered definitions in the extent of this paper because

of limited space.

www.manaraa.com

Temporal Extensions of OCL Revisited 197

iv. ’always’ expressions are true iff they hold in all states of the path:

I[[always(e)]](ε) =

⎧⎨
⎩

true if ∀i ∈ 0, ..., n.I[[e]](εi) = true
false if ∃i ∈ 0, ..., n.I[[e]](εi) = false
⊥ otherwise

v. ’eventually’ expressions iff there exists a state along the path where it eval-
uates to true:

I[[eventually(e)]](ε) =

⎧⎨
⎩

true if ∃i ∈ 0, ..., n.I[[e]](εi) = true
false if ∀i ∈ 0, ..., n.I[[e]](εi) = false
⊥ otherwise

We say an LT-OCL expression e ∈ Exprt is true on π if I[[e]](π, β, 0) = true.

As can be seen from the definition, the semantics of an LT-OCL formula is
defined in the scope of a single trace, which reflects one execution run of a model.
Therefore, we denote a LT-OCL expression e ∈ Exprt as true with respect to a
model behaviour, iff e is true on all possible traces. This corresponds directly to
an implied Kripke structure, which consists of all possible states that a might
be entered during model execution.

LT-OCL application context. The Essential OCL subset defined in the stan-
dard does not make an explicit statement about the contextual element to which
an OCL expression can be attached (cp.[1]). As consequence of the package merge
of the MOF metamodel, we assume that the context definitions remain valid.
For usage of LT-OCL expressions, we restrict the scope of application to invari-
ants of classifiers.

4 Example: SteamBoiler Control System

In this section we illustrate the application of LT-OCL along with a well-known
example: the steam-boiler control system [8]. Within this paper, we consider a
simplified version of the steam-boiler consisting of one controller program and
one pump8 that are modelled using a state-machine language. During normal
operation, the task of the controller is to regulate the water supply of the steam-
boiler tank in order to maintain the water level in a certain range while the
water is evaporating. This is achieved by switching the pump/valve on or off9.
Important for proper system operation is the safety constraint of the steam-
boiler which says that the water level must not leave the normal range for more
than 5 seconds. Otherwise, the system must be halted. Figure 3 shows the state-
machine model of both components.

8 the original system specification defines four pumps, an additional maintenance-
mode and diagnostic capabilities for failure detections which are omitted here for
simplicity, cf. to [8] for details.

9 originally, the valve is only used for initial evacuation of the tank.

www.manaraa.com

198 M. Soden and H. Eichler

(a) Controller (b) Boiler

Fig. 3. The steam-boiler control system as two state machines: 3(a) controller program,
3(b) pump

Fig. 4. Simple StateMachine Metamodel

The state machines are defined by the metamodel shown in figure 4. We
use the standard UML notation as syntax for states and transitions with some
refinements for labels at transitions. Labels are made up of triples of the form:

<guard> / <action> / <clock-reset>

where <action> and <clock-reset> are optional. The values of <guard> and
<action> are mapped directly to the corresponding attributes of meta class
Transition with the following exceptions:

(1) <clock-reset> might only be the value ’clock := 0’ which maps to
resetClock=true (otherwise resetClock is false)

(2) any <guard> starting with ’clock’ simply describes the value of the
timeLimit attribute

www.manaraa.com

Temporal Extensions of OCL Revisited 199

These limitations have been introduced solely for reasons of simplicity of the
example10. Conceptually, each state-machine has a single, local clock. All clocks
are continuously increasing over time in discrete steps. A transition may re-
set the machine’s clock through clock := 0 or react upon changes only by
specifying a time limit as guard condition, describing when the transition shall
fire.

Intuitively, the controller in figure 3 will operate in Normal mode upon receiv-
ing a SwitchOn event which subsequently emits an ActivatePump event to start
the pump unit. Whenever a LevelMin or LevelMax event is received describing
the occurrence of a water level measurement exceeding the limits, the controller
starts to actively regulate the level by sending a OpenValve or OpenPump event.
At the same time, the machine’s clock is reseted to measure the time spend in
state Regulating. If a LevelNormal event is received to indicate resuming of
a normal water level, the controller will Close the pump/valve and continue
normal operation. In the case that 5 seconds have passed and no LevelNormal
event was received, the system is halted according to the specification with an
EmergencyStop. Note that the system definition is incomplete: no component
emits the measuring events LevelNormal, LevelMin and LevelMax. We will dis-
cuss on these once we introduced the operational semantics.

The operational semantics of the timed state-machines given informally above
is now precisely defined using MActions. First, we define the runtime model us-
ing the three classes Event, EventBroker and State MachineInstance (marked
grey in figure 4). Thereby, an instance of meta class State MachineInstance
(abbreviated as SMI in the following) represents an instance of a StateMachine.
This is expressed using the explicit instanceOf relation of the M3Actions frame-
work. During runtime, this instanceOf relation is available and can be navigated
via an implicit property metaObject. As runtime data, the class carries a ref-
erence to the current activeState and the machine’s internal clock. SMIs are
connected to a ’platform infrastructure’ represented by class EventBroker that
distributes the Events.

The action semantics come in via MOperations, depicted as operation sig-
natures in figure 4. The main execution loop is contained in dispatchEvents,
shown in figure 5(a). Assuming all SMIs are connected as clients to a broker
instance, the main idea is to continuously broadcast each event to all client ma-
chines which in turn may emit events back that are scheduled by adding them at
the end of the queue (FIFO). As seen in figure 5(a), first a decision node checks
the eventQueue for emptiness. If the queue is empty, the termination condition
checks whether all state-machines have reached a final state11. In case not all
machines have reached a final state, a default event is created by a create action
and afterwards it is enqueued in eventQueue (multi-valued assign operator ’+=’).
The next action queries for the first element of this list and the flow continues

10 otherwise we would have to specify additionally the operational semantics of an
expression language which does not contribute to exemplifying LT-OCL.

11 if we assume that there is only a single event-broker, the check
self.clients->forAll(activeState.final) would have been sufficient.

www.manaraa.com

200 M. Soden and H. Eichler

(a) EventBroker#dispatchEvents (b) StateMachineInstance#execute

Fig. 5. Main behaviour of the state machine language

with an iterate action over all clients12. The iteration over all connected clients
constitutes the main part of the behaviour and consists of two actions:

fire next transition is an invocation of execute(event : Event), where the
iteration variable sm is used as new self and the current event is passed as
parameter. The execute operation performs a single step of the machine sm
and is described further below (cp. figure 5(b))

sm.clock := sm.clock + 1 increments the clock of the current sm object us-
ing an assignment action

Once the iteration has finished, the processed event is removed from the queue
using the multi-value removeAt operator. Note that this global event dispatch
behaviour models the simplest form of a loss-free event channel.

The second behaviour is execute of class SMI as shown in figure 5(b). Briefly
described, the behaviour consists of three phases:

(1) Evaluate the guards of the active state to find any transition that can fire
for the current event. This is done by invoking the evalGuard operation
on self13. The invoked behaviour is shown in figure 6. Otherwise, if no
transition is enabled, the behaviour quits.

12 Note that main indicates the control flow in case of multiple object flows.
13 ’self:self’ action has evalGuard as invocation target.

www.manaraa.com

Temporal Extensions of OCL Revisited 201

(2) Once a transition is found (i.e. firedTransition holds a reference to that
transition), it is checked for a clock reset statement. If one exists, the local
clock is reset.

(3) In case an action clause is present at the transition, a new event is created
and value is set to the annotated string of the fired transition. Finally, this
new event is enqueued at the event broker.

The behaviour of step (1) has been reduced to the minimum that is necessary
to react on events and time conditions. As can be seen in figure 6, only two
decision nodes check for enabled transitions. Firstly, the clock value is evaluated
whether it exceeds the limit given in timeLimit. Normally, a more sophisticated
expression language would be necessary to evaluate other conditions than this
fixed ’greater than’ clock comparison. Secondly, a subsequent decision compares
the value string of the event to check for a matching guard.

Fig. 6. Evaluation of guard conditions: StateMachineInstance#evalGuards

As consequence of step (3), not every execution leads to the creation of events,
but each registered state-machine may contribute a new event. In other words,
the event queue may grow maximal by the number of registered clients in each
iteration. Thus, dispatching only one event per cycle has the effect that the
delivery of events might take longer the more traffic is caused by communication.

The three operations introduced are all that is needed to execute the steam-
boiler models shown in figure 3. However, the initial system setup (i.e. instan-
tiation and connection of the state-machines to the broker) are not explained
here.

The system as introduced so far did not specify where the measuring events
come from. In our experiments, we have modelled the physical measuring unit
as ’virtual’ state-machine that is connected to the event broker and that simply
asks for user input in every round of event distribution14. These manually created
events were then enqueued to trigger state-transitions in the system shown in
figure 3. From our experience with the modelling of open systems such exchange
of information with the environment is quite common and usually modelled
separately.

14 input was considered to be the value of an event, where empty strings indicate no
event.

www.manaraa.com

202 M. Soden and H. Eichler

4.1 Analysis of the Steam-Boiler

In this section, we perform some analysis of the steam-boiler by means of LT-
OCL constraints to exemplify the usage of temporal constraints for the domain
specific state-machine language introduced in the previous section.

As safety property, the steam-boiler specification states that in every cycle
of the steam boiler execution, the water inside the boiler should be always in
safe limits within five seconds. We can express this using an always/eventually
combination over the state-machine instances (LT-OCL 1):

let cp : SMI = SMI.allInstances()
->select(metaObject.name=’ControllerProgram’) in
let pump : SMI = SMI.allInstances()
->select(metaObject.name=’Pump’) in
always(cp.activeState=’Regulating’ implies cp.clock <= 5 and
eventually((cp.activeState=’Normal’ and pump.activeState=’On’) or

(cp.activeState=’EmergencyStop’and pump.activeState=’Stop’)))

Since we don’t want to express invariants over all instances of class StateMachine
or SMI, we have to select the corresponding instances by name (here: using
let statements). Note that from the semantic definition of LT-OCL, the whole
expression is undefined until both let expression binds values for cp and pump
(cf. definition 2). Additionally, we can assure correct response behaviour for e.g.
the critical LevelMax event. To guarantee that whenever the quantity is less than
the minimum limit the pump will eventually be started, might be expressed as
follows (LT-OCL 2):

always(Event.allInstances()->forAll(value=’LevelMin’ implies
eventually(pump.activeState=’Pumping’)))

An interesting property is if we want to explicitly state the time when the pump
will be opened relative to the occur access to the clock attributes of both units,
we could try to express this by comparison of the two clocks of the controller
and the pump. However, the pump unit does not reset its clock which makes
it impossible to access the points in time when the transition happens. If we
would add a clock reset statement to the transition from state On to Pumping,
i.e. OpenPump/clock := 0 instead of OpenPump, we could try to formulate the
time difference as follows (LT-OCL 3):

always(cp.activeState=’Regulating’and pump.activeState=’Pumping’
implies pump.clock <= cp.clock + 1)

Note that this constraint might not be true in case the event queue is filled with
other events coming from additional state-machines. As pointed out earlier, the
delivery time depends on the amount of events that are generated. Even worse,
the modelling of the local clocks of each state-machine are incremented in the
action semantics after propagation of an event to a machine. That means, even
though there would be no clock resets present at any machine, still not all clocks
would be always globally synchronized and the constraint (LT-OCL 4):

www.manaraa.com

Temporal Extensions of OCL Revisited 203

always(SMI.allInstances()->forAll(sm1 |
SMI.allInstances()->forAll(sm2 | sm1.clock = sm2.clock)))

would never be true. This is due to the fact that the induced states are still
bound to the ’micro-states’ of the action semantics and do not reflect yet the
observable states of the language. This problem can be solved by marking the two
transitions named SGT of the behaviour shown in figure 5(a) as State Generating
Transitions (cf. section 3.2). Thus, we obtain a consistent system state across
all state machines whenever the loop’s SGT fires. In the example, this leads
to a consistent clock increment for all state machines and therefore constraint
(LT-OCL 3) can be rewritten with the next operator (LT-OCL 5):

always(cp.activeState=’Regulating’
implies next(pump.activeState=’Pumping’))

In other words, we can either introduce the clock reset for (LT-OCL 3) or directly
express the constraint over system states.

5 Related Work

There have been a couple of proposals to apply temporal extensions to OCL in
the past. Driven by the need to specify temporal constraints on the dynamics
of UML models, the focus of previous work concentrated on extension of OCL
for UML models, for example [14] and [15]. These proposals did not provide a
formal semantics.

Most recently, the work of [16] defines Temporal OCL (TOCL) with the linear
temporal operators always, sometime, always-until, sometime-before and next.
The authors give a formal definition of the temporal semantics by an extended
version of the object model developed by Richters et al. (cp. OCL standard, cf.
Appendix A in [1]) and which is reused in our approach. The approach presented
in this paper can be seen as taking these ideas further by binding the notion of
system states to traces and operational semantics. Additionally, we consider an
open system view through interpretation along execution traces with thoroughly
elaborated notion of undefined temporal OCL formulas. However, LT-OCL de-
fines only future expressions (no ’previous’, ’alwaysPast’).

Another main direction of work targets on model checking of temporal OCL
constraints [3]. Thereby, OCL definitions are mapped onto Object-Based Tempo-
ral Logic (BOTL) as semantic domain [17]. BOTL is a formal language synthe-
sized from static expressions (similar to algebraic signatures) and Computation
Tree Logic (CTL). The semantics of BOTL in turn are given by Kripke struc-
tures (cf. section 2). The authors make no explicit statement on application
for other languages than UML, but the work concentrates on model checking
of formalized UML state machine models. Related work of OCL extensions of
branching time logic is further reported in [4][5] for real-time systems.

www.manaraa.com

204 M. Soden and H. Eichler

5.1 Discussion

The introduction of temporal operators into a predicate logic like OCL is a non-
trivial task. Apart from theoretical considerations about decidability15, existence
of efficient evaluation algorithms is a precondition to handle the complexity of
expressions in practice. Hence, one design rational for LT-OCL was to deliber-
ately limit expressions to future-directed (monadic) statements. Moreover, the
choice in defining the semantics over object changes was motivated in the de-
velopment of an efficient implementation that allows on-the-fly monitoring of
constraints by means of runtime verification [18]. We are currently studying how
an evaluation algorithm can be implemented that effectively uses the change
information to re-evaluate only parts of an LT-OCL expression in order to deal
with the overall complexity.

In the steam-boiler example, we modelled parallelism of state-machines ex-
plicitly by a loop that distributes events sequentially. MActions, ASM and others
support parallelism as native language construct. As direct consequence for LT-
OCL, expressiveness is limited to either local evaluation for a trace of each thread
or global evaluation, if a global ordering of change events is possible. Otherwise,
one need to define something equivalent to CTL (or CTL*) to express properties
in branching time with path quantifiers.

6 Conclusion

This paper defined Linear Temporal OCL as extension of Essential OCL with
next, until, always and eventually operators. LT-OCL formulas have temporal se-
mantics and are interpreted over behaviour of a language given by an M3Actions
specification. We explained purpose and application along with the steam-boiler
control example that was specified in a timed state-machine language. We hope
that this work contributes to the dynamic analysis of executable models for do-
main specific languages that are not defined by ’stereotyping UML’, but that
have precise semantics given by an action semantics. However, we see the results
presented here as one step forward to an dynamic assessment framework based
on OCL. For further experiments and evaluation of the approach, LT-OCL is
currently implemented as proof of concept.

References

1. OMG: OCL 2.0 Specification. Object Management Group (2006) formal/2006-05-01
2. Ziemann, P., Gogolla, M.: An extension of OCL with temporal logic. In: Critical

Systems Development with UML, pp. 53–62 (2002)
3. Distefano, D., Katoen, J.-P., Rensink, A.: On a temporal logic for object-

based systems. In: Formal Methods for Open Objectbased Distributed Systems,
pp. 305–326. Kluwer Academic Publishers, Dordrecht (2000)

15 see [10] for a discussion.

www.manaraa.com

Temporal Extensions of OCL Revisited 205

4. Flake, S., Mueller, W.: An OCL extension for real-time constraints. In: Advances in
Object Modelling with the OCL. LNCS, pp. 150–171. Springer, Heidelberg (2001)

5. Cengarle, M.V., Knapp, A.: Towards OCL/RT. In: Eriksson, L.-H., Lindsay, P.A.
(eds.) FME 2002. LNCS, vol. 2391, pp. 390–409. Springer, Heidelberg (2002)

6. Soden, M., Eichler, H.: Enterprise Modelling and Information Systems Archi-
tectures - Concepts and Applications. In: Proceedings of the 2nd International
Workshop on Enterprise Modelling and Information Systems Architectures. LNI,
vol. P-119. GI (2007)

7. Scheidgen, M., Fischer, J.: Human comprehensible and machine processable speci-
fications of operational semantics. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.)
ECMDA-FA. LNCS, vol. 4530, pp. 157–171. Springer, Heidelberg (2007)

8. Abrial, J.R.: Steam-boiler control specification problem. In: Formal Methods for
Industrial Applications, Specifying and Programming the Steam Boiler Control
(the book grow out of a Dagstuhl Seminar, June 1995), London, UK, pp. 500–509.
Springer, Heidelberg (1996)

9. Goldblatt, R.: Mathematical modal logic: a view of its evolution. J. of Applied
Logic 1(5-6), 309–392 (2003)

10. Abiteboul, S., Herr, L., van den Bussche, J.: Temporal versus first-order logic in
query temporal databases. In: ACM Symposium on Principles of Database Systems,
Montreal, Canada, pp. 49–57 (1996)

11. Humbold University Berlin: M3Actions - Operational Semantics for MOF Meta-
models (2008), http://www.metamodels.de

12. Soden, M., Eichler, H.: Eclipse Proposal: Model Execution Framework (2009),
http://www.eclipse.org/proposals/mxf/

13. Soden, M.: Operational semantics for MOF metamodels: Tutorial on M3Actions
(2008)

14. Conrad, S., Turowski, K.: Temporal OCL meeting specification demands for busi-
ness components. In: Unified Modeling Language: Systems Analysis, Design and
Development Issues, pp. 151–165 (2001)

15. Ramakrishnan, S., Mcgregor, J.: Extending OCL to support temporal operators. In:
Proceedings of the 21st International Conference on Software Engineering (ICSE
1999) Workshop on Testing Distributed Component-Based Systems, LA, May 16
- 22 (1999)

16. Ziemann, P., Gogolla, M.: An OCL extension for formulating temporal constraints.
Technical report, Universität Bremen (2003)

17. Distefano, D., Katoen, J.-P., Rensink, A.: Towards model checking OCL. In: Pro-
ceedings, ECOOP Workshop on a Precise Semantics for UML (2000)

18. Havelund, K., Technology, K., Rosu, G.: Monitoring programs using rewriting. In:
Proceedings, International Conference on Automated Software Engineering (ASE
2001), pp. 135–143. IEEE, Los Alamitos (2001)

http://www.metamodels.de
http://www.eclipse.org/proposals/mxf/

www.manaraa.com

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 206–220, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An MDA-Based Approach for Behaviour Modelling of
Context-Aware Mobile Applications∗

Laura M. Daniele, Luís Ferreira Pires, and Marten van Sinderen

Centre for Telematics and Information Technology,
University of Twente, Enschede, The Netherlands

{l.m.daniele,l.ferreirapires,m.j.vansinderen}@ewi.utwente.nl

Abstract. Most reported MDA approaches give much attention to structural as-
pects in PSMs and in generated code, and less attention to the PIM level and the
behaviour of the modelled applications. Consequently, application behaviour is
generally not (well) defined at the PIM level. This paper presents an MDA-
based approach that incorporates behaviour modelling at the PIM level in the
development of a specific category of applications, i.e., context-aware mobile
applications. The paper also illustrates a behaviour model transformation real-
ized by using Medini QVT, which is a tool that implements the Query/ View/
Transformation (QVT) Relations specification defined by OMG for model-to-
model transformations.

1 Introduction

The MDA community agrees on the need to consider behavioural aspects in model
transformations meant to support application development. However, there is still no
agreement on how behaviour aspects should be supported. Although considerable
effort has been done on model transformations from PIMs to PSMs in several applica-
tion domains, most reported MDA approaches [7,8,13] give much attention to struc-
tural aspects in PSMs and in generated code, and less attention to the PIM level and the
behaviour of the modelled applications. Consequently, application behaviour is gener-
ally not (well) defined at the PIM level, and behavioural aspects have to be incorpo-
rated later in the development process, by adding hand-written code as annotations to
PSMs or to implementation code skeletons. In this paper, we provide an MDA-based
approach that focuses on behaviour modelling of a specific category of applications,
namely, context-aware mobile applications. Context-aware mobile applications are
intelligent applications capable to sense changes in the user’s environment and conse-
quently adjust their behaviour in order to provide relevant functionality to their user
anywhere and at anytime.

Our MDA-based approach for the development of context-aware mobile applica-
tions decomposes the PIM level in three levels of platform-independence, where each
consecutive PIM level consists of a refinement of the previous one, stressing the

∗ This work is part of the Freeband A-MUSE Project (http://a-muse.freeband.nl). Freeband is

sponsored by the Dutch government under contract BSIK 03025.

www.manaraa.com

 An MDA-Based Approach for Behaviour Modelling 207

behavioural aspects. This paper presents our first results towards the automation of
this approach, illustrated with a case study that realises a model transformation with
the Medini QVT tool [17], which implements the Query/View/Transformation (QVT)
Relations specification defined by OMG for model-to-model transformations.

The structure of the paper is the following: Section 2 presents an overview of the
A-MUSE MDA-based methodology and focuses on the PIM level of this methodol-
ogy, Section 3 illustrates with a case study the application of Medini QVT in the first
transformation step of our approach, Section 4 discusses our second transformation
step, Section 5 discusses some related work, and Section 6 presents our conclusions
and identifies topics for future work.

2 MDA-Based Approach

According to MDA principles, the A-MUSE design methodology divides the design
of distributed applications in different levels of models with different degrees of ab-
straction and platform-independence. Fig. 1 shows how the levels considered in this
methodology can be applied to context-aware mobile applications [1,2].

The service specification level describes a context-aware mobile service1 as a
monolithic behaviour from an external perspective. At this level, we specify the func-
tionality that our service offers to its user and we do not consider any structural detail
of the service, i.e., we abstract from its internal components.

patform-
specific

service design

service
specification

T1

T2

patform-
independent

service design

platform
selection

platform-
independent

design

platform-
specific
design

T3

patform-
specific

service design

Web Services
(WSDL + UDDI)

CORBA
(OMG Trader)

action
providers

service
trader

context-aware
mobile service

service refinement

coordination
component

 models

context
sources

model transformations

user
components

Fig. 1. A-MUSE design methodology for context-aware mobile applications

1 The term service at this level denotes the observable behaviour of the whole application, as

opposed to the use of the term service in service-oriented architectures to denote the func-
tionality supported by a service provider reachable from some middleware.

www.manaraa.com

208 L.M. Daniele, L.F. Pires, and M. van Sinderen

The platform-independent service design level describes a context-aware mobile
application from an internal perspective revealing a (given) architecture. This archi-
tecture, which is described in [4], consists of context sources, action providers, coor-
dination component, service trader and user components. Context sources sense
events in the user’s environment and provide these events to the coordination compo-
nent, which consequently triggers actions that are executed by action providers. Con-
text sources and action providers are registered in the service trader in order to be
dynamically available to the coordination component. Each user accesses the service
through a user component, which provides the user interface and forwards requests to
the coordination component. The core of this architecture consists of the coordination
component, since it orchestrates all the internal interactions. These interactions are: (i)
user requests from user components, (ii) context events from context sources, (iii)
actions to be executed by action providers, and (iv) resources registered in the service
trader.

The platform-specific service design level describes the realisation of a context-
aware mobile application in terms of specific target technologies. Several alternative
PSMs may implement a PIM as long as correctness and consistency are guaranteed.
Therefore, it is in principle possible to use different middleware technologies to real-
ise the platform-specific service design, such as, for example, web services or
CORBA, as indicated in Fig. 1.

This paper focuses on the platform-independent design level of the methodology
shown in Fig. 1, namely on the service specification and platform-independent service
design model and the transformation T1 between these models. Fig.1 shows that the
platform-independent design phase in the A-MUSE design methodology is decom-
posed in the service specification and platform-independent service design steps. The
platform-independent service design model should be a refinement of the service
specification, which implies that correctness and consistency particularly of behav-
ioural issues have to be addressed in the refinement transformation. However, when
trying to realise this refinement transformation, we noticed that the gap between ser-
vice specification and platform-independent service design is rather wide, so that
correctness and consistency was hard to guarantee in a single refinement transforma-
tion T1. Therefore, we introduced an intermediate step in which the service specifica-
tion behaviour is refined. This intermediate step results in an intermediate design
called service design refined model and our final PIM is renamed to service design
component model. The refinement transformation T1 has been consistently decom-
posed in two transformations T1’ and T1”. Fig. 2 shows the approach we have defined
with all the PIM levels and transformations between these levels.

Fig. 2 depicts the starting point of our approach, i.e., the service specification, in
which we define the functionality offered by the application to the user in terms of
actions and causality relations between these actions. The actions and causality rela-
tions at the service specification level are too abstract to be directly realised by plat-
form-specific technologies. Therefore, the second step of our approach consists of
defining a service design refined model, in which we refine each of these actions and
causality relations into more detailed actions and causality relations that can be directly
supported by the realisation platform. In the next step we compare the refinements in
the service design refined model in order to identify sequences of actions that recur in

www.manaraa.com

 An MDA-Based Approach for Behaviour Modelling 209

service specification
(A-MUSE DSL)

service design
refined model
(A-MUSE DSL)

ComponentA ComponentB ComponentC ComponentD

action1

action2

action3

action4

service design
component model

(ISDL)

PIM

platform selection

PSM

pattern1

pattern2

T1’

T1”

service specification
(A-MUSE DSL)

service design
refined model
(A-MUSE DSL)

service specification
(A-MUSE DSL)

service design
refined model
(A-MUSE DSL)

ComponentA ComponentB ComponentC ComponentD

action1

action2

action3

action4

service design
component model

(ISDL)

PIM

platform selection

PSM

pattern1

pattern2

T1’

T1”

Fig. 2. PIM levels and transformations between these levels

several refinements. We call these sequences of actions interaction patterns, which we
have defined in [3] as a ‘recurring sequence of actions performed by two or more inter-
acting components defined from the internal perspective of a service’.

Fig. 2 shows two interaction patterns and their assignment to components. The first
interaction pattern, which we have marked with the “ ” symbol, recurs in the refine-
ment of actions 1 and 3, and is assigned with dashed arrows to the corresponding
components (components A and B in Fig. 2). The second interaction pattern, which
we have marked with the “ ” symbol, recurs in the refinement of actions 2 and 4, and
is assigned with dotted arrows to components C and D. The assignment of interaction
patterns to components results in the service design component model, in which we
define the behaviour of each individual component. The service design component
model provides the input for the platform-specific service design level without impos-
ing any specific implementation choices. For example, the coordinator component can
be implemented as a BPEL process, the action providers as web services, and the
service trader as a UDDI registry.

In contrast to our approach, most reported MDA development practices [7,8,13] do
not consider behaviour refinements at the PIM level and directly start the develop-
ment process by defining a platform-independent model of the architecture that im-
plements the application (our service design component model). We believe that this
is the major novelty of our approach.

3 Transformation from Specification to Design Refined Model

This section illustrates with a case study the transformation T1’ of Fig. 2 (from service
specification to service design refined model). This case study is the Live Contacts
application [14], which consists of a context-aware mobile application that runs on
Pocket PC phones, Smartphones and desktop PCs. Live Contacts allows its users to

www.manaraa.com

210 L.M. Daniele, L.F. Pires, and M. van Sinderen

contact the right person, at the right time, at the right place, via the right communica-
tion channel. More information about Live Contacts can be found in [15].

We implemented transformation T1’ with the Medini QVT tool [17], which con-
sists of a core engine that implements the QVT Relations standard defined by OMG
[18], and a graphical debugger and editor to facilitate transformation development.
Fig. 3 shows an overview of the Medini QVT transformation approach. Inputs to
Medini QVT transformations are: (i) a source and a target metamodel defined in
Ecore, which is the metamodel type used by the Eclipse Modeling Framework (EMF)
[6], and (ii) a source model conforming to the source metamodel. The Medini QVT
transformation produces as output a target model that conforms to the given target
metamodel.

Fig. 3. Overview of the Medini QVT transformation approach

3.1 Source Model

The service specification consists of two parts: a UML information model that repre-
sents status information handled by the modelled context-aware mobile application, and
an A-MUSE DSL model that specifies the behavioural aspects of the application. The
A-MUSE Domain Specific Language (DSL) [11] is a language developed and applied
in the A-MUSE project [9] that allows us to model behavioural aspects in terms of cau-
sality relations between interactions without constraining the internal implementation of
the application. Our approach is not restricted to any specific modelling language and in
this work the A-MUSE DSL is only a vehicle to reach our purposes.

Since we are developing context-aware mobile applications, our service specifica-
tion actually includes also a UML context model [4], which represents the relevant
concepts used by context-aware mobile service components that manipulate context,
i.e., context sources and coordinator component of Fig. 1. Transformation T1’ uses
this model as the reference for context information.

In our initial PIM we model the interactions between one user instance and the sys-
tem. This simplification implies that when we realize the service at the platform-
specific design level, we have to make sure that the resulting system is able to support
different user instances that run simultaneously and consistently. Fig. 4 depicts this
service specification perspective.

www.manaraa.com

 An MDA-Based Approach for Behaviour Modelling 211

context-aware mobile
service

context-aware mobile
service

Fig. 4. Service specification perspective

Fig. 5 presents a service specification example for the Live Contacts application.

We refer to the application user as an item me of type FocusUser. An item is a global
behaviour variable that can be accessed in the behaviour that defines the variable. A
user may request to remove a buddy from the buddy list (removeReq) by giving as
input to the application the name of this buddy. If the buddy is not in the list (!Is-
InList(removeReq.name, BuddyList): Boolean condition), the user request is rejected
(removeRej), otherwise (IsInList(removeReq.name, BuddyList): Boolean condition)
the request is accepted (removeAcc) and the buddy is removed from the buddy list of
the user (me.getBuddyList().removeBuddy(me.getBuddyList().getBuddy
(removeReq.name)) function).

The user may also contact a buddy using some specific communication means
(contactReq). In this case, the user must give as input to the application the buddy
name and the preferred means to reach this buddy. Depending on the contact means
selected by the user, the application opens the appropriate communication channel
(SMS or e-mail) and retrieves the mobile number or the e-mail address of the buddy
(getMobilePhoneNr() or getEmailAddress() functions). We do not provide a complete
specification of the SMS and Email services, since this is out of the scope of this
paper. We only assume that these services need an input (mobileNr and emailAddress,
respectively).

The user may also be notified by the application with an alert (proximityAlert)
when a buddy, who is online in the application, is in the neighbourhood of the user
(proximityEvent). The status information depicted in the behaviour of Fig. 5 is defined
in the UML information model of the service specification.

3.2 Target Model

The service design refined model consists of a UML information model, and an A-
MUSE DSL model that describes the structured behaviour of the modelled applica-
tion, revealing the interactions among architecture components [4]. Fig. 6 shows these
components in the architecture that has been applied in the A-MUSE project to realise

www.manaraa.com

212 L.M. Daniele, L.F. Pires, and M. van Sinderen

Fig. 5. Service specification: example (exported from the A-MUSE DSL editor)

Fig. 6. A-MUSE architecture for context-aware mobile applications

the Live Contacts application. However, this architecture is general enough and can
be reused for other context-aware mobile applications by simply redefining some
application-specific components, such as context sources and action providers.

www.manaraa.com

 An MDA-Based Approach for Behaviour Modelling 213

Fig. 6 shows the perspective of a single user with a single buddy. The presentation
component takes care of the interactions with the end-user. The user agent (UA, one
per user) acts on behalf of the user with the presentation component to obtain user
input and present user output, and provides the service coordinator with user input
events. The service coordinator (C) takes care of orchestrating the other components,
searching and updating a database (DB), which contains information about users (e.g.,
name, password, preferred contact means and list of buddies). We assume that there is
one service coordinator and one database. The service coordinator also interacts with
context sources and action providers.

The context sources (CS) sense changes in the user context and provides the ser-
vice coordinator with context events. Fig. 6 shows the (GPS) location service that
provides information about a user’s current location, the (MSN) presence service that
provides indications whether users registered in the Live Contacts application are
available online in the network, and the (Outlook) calendar service that provides cal-
endar information. In this example we assume that there is one (GPS) location ser-
vice, one (MSN) presence service and one (Outlook) calendar service for each user
agent. These services are registered in the service trader.

The action providers (AP) are responsible for performing actions triggered by the
service coordinator. Actions represent application reactions to user input events and
context events. Fig. 6 shows an SMS service, phone service, e-mail service and chat
service, which enable a user to communicate with buddies through, respectively,
sending messages, making a phone call, sending e-mails or chatting. We assume that
there is one of these services for each user agent. These services are registered in the
service trader (ST), which registers all the available context sources and action pro-
viders in order to allow the coordinator to discover and invoke them.

Fig. 7 presents the service design refined model that reveals the architecture men-
tioned above and shows how we have refined the functionality described in the service
specification, i.e., remove Req, contactReq and proximityEvent, in terms of sequences
of actions.

Each action in Fig. 7 is marked with a label and represents an interaction between
two components and the direction of this interaction. In order to avoid clogging the
figure, we have not included the status information handled by components. This
information is the same as depicted in Fig. 5, but assigned to the proper corresponding
refined actions.

Fig. 7 shows that the user request to remove a buddy from his/her list arrives to the
user agent (UA), which forwards this request to the coordinator (C). The coordinator
checks the database (DB) to determine whether the buddy is included in the buddy list
of the user (findRemReq and findRemRsp). If this is the case, the coordinator removes
the buddy from the list (removeBuddy) and sends a positive response to the user agent
(removeAcc), which presents the result to the user. If the buddy is not in the list, the
coordinator sends a negative response to the user agent (removeRej), which presents
the result to the user.

The user request to contact a buddy with a specific means arrives to the user agent
(contactReq). The user agent forwards this request to the coordinator, which retrieves
the buddy to be contacted from the database (findContactReq and findContactRsp).

www.manaraa.com

214 L.M. Daniele, L.F. Pires, and M. van Sinderen

Fig. 7. Design refined model: example (exported from the A-MUSE DSL editor)

The coordinator evaluates the parameters of the contact request. Depending on the
means selected by the user, the right communication channel is selected (SMS or e-
mail). In both cases, the coordinator performs two activities concurrently, namely,
retrieving from the database the number or address where to contact the buddy, and
asking the service trader (ST) to discover the proper service to contact the buddy.
Once both activities are concluded, the coordinator is able to invoke the proper action
provider (AP) and provide it with the necessary input, which may be the mobile num-
ber or the email address of the buddy.

In order to notify the user of the occurrence of a proximity event, the coordinator has
to subscribe in the context sources (CS) a context expression related to that event (sub-
scribeProximity). When the value of this expression becomes true, the context source
notifies the coordinator (proximityChange). While retrieving the buddy name from the
database (findBuddyReq and findBuddyRsp), the coordinator requests to the context
sources the current MSN status of the buddy (msnStatusReq and msnStatusRsp) in order
to check if this value is online. If this is the case, the coordinator generates an alert to the
user agent, which forwards the alert to the user (proximityAlert).

3.3 Transformation Relations

Most reported MDA model transformations are realised between models that conform
to structurally similar but different metamodels, such as, for example, from UML class
diagrams to Java code skeletons. In contrast, transformation T1’ is an architectural

www.manaraa.com

 An MDA-Based Approach for Behaviour Modelling 215

transformation, which relates element structures of the source model to more complex
element structures in the target model. In order to generate the target model of Fig. 7
from the source model of Fig. 5, we have created a transformation called SStoSDRM
between the domains SS (Service Specification) and SDRM (Service Design Refined
Model). This transformation consists of five basic relations in the QVT Relations lan-
guage used by the Medini QVT tool. Fig. 8 shows these relations schematically.

The first relation (BehaviourMapping in Fig. 8) creates a one to one mapping of an
SS element Behaviour with name ServiceSpecification onto an SDRM element Be-
haviour with name ServiceDesignRefinedModel. The second relation (EntryItemIn-
stanceMapping in Fig. 8) creates a one to one mapping from SS to SDRM of: (i) an
EnablingRelation element that relates an EntryPoint to an OrSplit (), (ii) an
EnablingRelation element that relates an OrJoin to the EntryPoint of a behaviour
instance (), and (iii) an item element with name me. The third relation (Re-
moveRequestMapping in Fig. 8) maps the removeReq functionality of the SS onto the

3) RemoveRequestMapping

2) EntryItemInstanceMapping

1) BehaviourMapping

4) ContactRequestMapping

5) ProximityMapping

Fig. 8. Transformation relations

www.manaraa.com

216 L.M. Daniele, L.F. Pires, and M. van Sinderen

refinement of the same functionality in the SDRM. The fourth relation (ContactRe-
questMapping in Fig. 8) maps the contactReq functionality of the SS onto the refine-
ment of the same functionality in the SDRM. The last relation (ProximityMapping in
Fig. 8) maps the proximity functionality of the SS onto the refinement of the same
functionality in the SDRM. In this way the architectural refinement alternatives are
documented and can be applied appropriately to the source model.

4 Transformation from Design Refined Model to Component
Model

This section discusses the source and target models of transformation T1” of Fig. 2
(from service design refined model to service design component model) with the Live
Contacts application.

4.1 Source Model

The source model of this transformation consists of the target model of transformation
T1’. In this model, we have been able to identify recurring sequences of interactions
between components (interaction patterns). Particularly, we have identified two types
of interaction patterns, namely basic and composite patterns. Basic interaction pat-
terns occur between two interacting components. An example of basic patterns in Fig.
7 is findRemReq and findRemRsp, which we call search pattern, and involves interac-
tions between the coordinator (C) and the database (DB). Composite interaction pat-
terns occur between more than two components and consist of combinations of basic
patterns. Examples of composite patterns in Fig. 7 are the refinement of the re-
moveReq functionality, which we call user request with acceptance or rejection pat-
tern, the refinement of the contactBuddy functionality, which we call user request
with external service pattern, and the refinement of the proximityEvent functionality,
which we call context event with alert pattern. From our experience with the Live
Contacts application we have defined a library of basic and composite patterns [5]
that cover the functionality of context-aware mobile applications that comply with the
architecture of Fig. 6.

4.2 Target Model

Fig. 9 shows an example of a service design component model with limited function-
ality. This should be the target model of the transformation T1”. In this model, we
have assigned the basic and composite interaction patterns identified in the service
design refined model to concrete components that can realise these patterns.

Fig. 9 depicts the assignment of the user request with acceptance or rejection
composite pattern to components. Dashed lines indicate the assignment of basic pat-
terns to components. The three involved components are the user agent, the coordina-
tor and the database. Fig. 9 depicts the behaviour of these components considering
their interactions. Fig. 9 uses ISDL (Interaction System Design Language) [12],
which allows the specification of behavioural aspects of interacting components.

www.manaraa.com

 An MDA-Based Approach for Behaviour Modelling 217

Simple Request basic pattern Search basic pattern

Update basic pattern Rejection Response basic pattern

User Request with Acceptance or Rejection composite pattern

Acceptance Response basic pattern

Fig. 9. Service design component model: example (exported from Grizzle [10])

5 Related Work

We briefly discuss here some related work that deals with MDA approaches in several
application domains. In [16] the importance of behaviour modelling techniques for
MDA is stressed. Given that MDA requires application behaviour to be explicitly
represented at the PIM level and that there is no consensus on how to represent this
behaviour, different categories of behaviour modelling methods are analysed. The
state-machines paradigm is identified as the best basis for such representation. We
agree that state machines are suitable to represent behavioural aspects of applications,
but we think that they are more suitable for the specification of behaviours that are
directly assigned to concrete components, and less suitable for the specification of
highly abstract behaviours, as in the case of our service specification (initial PIM).

Considerable effort has been spent on model transformations from PIMs to PSMs
in several application domains. For example, in [13], a formal MDA approach for the
development of mobile health system is discussed. A model-driven approach for the
development of access control policies for distributed systems is presented in [8]. In
[13] an MDA approach to implement personal Information Retrieval (IR) processes is
proposed. Although these approaches are applied to different application domains,
they all report on case studies in which little attention is given to the behaviour of
the modelled application at the PIM level, and directly generate PSMs based on the

www.manaraa.com

218 L.M. Daniele, L.F. Pires, and M. van Sinderen

architecture that implements the application. The PIMs are defined by using UML,
and PSMs are represented in programming languages, such as Java. Therefore, the
PIM-to-PSM transformation is performed between models that have structurally simi-
lar but different metamodels. In contrast, we focus on application’s behaviour refine-
ments at the PIM level and we realise transformations between models that have the
same metamodel, but our transformations embody architectural decisions and pre-
serve correctness and consistency.

6 Conclusions and Future Work

According to MDA principles, the A-MUSE design methodology divides the design
of distributed applications in platform-independent and platform-specific design lev-
els. In this paper, we focused on the platform-independent design level of this meth-
odology, and we proposed an approach to model the application behaviour at this
level through model refinements. While realising these refinements, we noticed that
the gap between abstract specifications and concrete models of application compo-
nents is rather wide, so that it was advisable to add an intermediate level of behaviour
modelling to the A-MUSE methodology. Therefore, we defined an approach that
decomposes the platform-independent design level in three models and two model
transformations. This paper focuses on the first of these model transformations.

Towards the automation of the first model transformation, we investigated the us-
age of the Medini QVT tool, which allowed us to define transformation rules in the
QVT Relation language defined by OMG. Although the results we have discussed in
this paper are preliminary, we can already conclude that it is possible to realise auto-
mated behaviour model refinements in the context of MDA, and Medini QVT is an
appropriate tool to support this goal. However, further work needs to be performed in
order to achieve full automation of this transformation. The presented example trans-
formation considers only part of the functionality offered by the Live Contacts appli-
cation to its users, and it should be extended with transformation rules that consider
the whole functionality. These extended transformation rules should also be tested
and validated with new case studies in order to demonstrate that they can be reused
with several context-aware mobile applications. Moreover, we still have to identify
the most appropriate level of granularity to define our transformation rules. When
realising transformation T1’, we have identified two types of interaction patterns,
namely basic and composite patterns. Basic patterns involve interactions between two
components and composite patterns involve interactions between more than two com-
ponents. We defined transformation rules for composite interaction patterns and we
noticed that these patterns are not very flexible, since they are complex and have a
fixed structure. Therefore, our transformation rules became large and complex. The
library of composite patterns is small, so the benefit of using these patterns is that the
number of transformation rules we needed to create was also small. In contrast, the
library of basic patterns is large and it would require a large number of transformation
rules. However, basic patterns give more flexibility in the design, since they are small,
simple, and can be dynamically combined in different configurations of complex
behaviours. Therefore, we learned that when considering the granularity of interaction
patterns, the trade-off between the number, size, and complexity of transformation

www.manaraa.com

 An MDA-Based Approach for Behaviour Modelling 219

rules on one hand, and the flexibility of design choices on the other hand have to be
considered. The most appropriate level of granularity level for interaction patterns is
subject to further investigation.

The second model transformation has been realised manually by assigning interac-
tion patterns to components that realise these patterns. This assignment was quite
straightforward, since we defined the interaction patterns as annotated actions that ex-
plicitly specify which components participate in the pattern. However, we noticed that
some synchronization and concurrency issues of interacting components still had to be
considered. For example, the coordinator component that orchestrates all the interac-
tions with other components in Fig. 7 has to schedule somehow the execution of the
composite patterns that refine the removeReq, the contactReq, and the proximity abstract
actions. The designer may decide to interleave these composite patterns, by executing
all the patterns one at a time in a single thread of control. Alternatively, the designer
may decide to execute these patterns in parallel threads of control. Independently of the
option chosen, some formalism should be used to represent and analyse these choices.
Moreover, the model in Fig. 7 represents only one user instance interacting with the
application. In reality, the coordinator has to handle multiple user instances running at
the same time. Therefore, further investigation is necessary on the formalisms that can
be used to support these aspects. Process algebra and labelled (modal) transition systems
seem to be suitable formalisms for these purposes. For example, an automated technique
for synthesizing behavioural models from safety properties and scenario-based specifi-
cations by using Modal Transition Systems (MTSs) that can be directly derived from
labelled transition systems is discussed in [19].

Although in this paper we made some design decisions to illustrate the case study,
our approach is not restricted to these decisions. For example, we used A-MUSE DSL
and ISDL to define our behaviour models, since these are general-purpose languages
that allow the modelling of application behavioural aspects in terms of causality rela-
tions between interactions without constraining the internal implementation of the
modelled application. However, we consider A-MUSE DSL and ISDL as vehicles to
define behaviour models that can be automatically transformed. Other languages and
techniques, such as UML activity diagrams or Message Sequence Charts (MSC), may
be used to define our models, as long as they allow us to represent behavioural as-
pects of the modelled applications exhaustively. Moreover, we tailored our approach
to the design of a specific category of applications, i.e., context-aware mobile applica-
tions. However, the same approach for behaviour modelling of applications through
model refinements, transformation rules and interaction patterns can be applied to
other categories of distributed applications by simply adjusting the reference architec-
ture of Fig. 6. This adjusted reference architecture should reflect the architectural
components and interactions between components that hold in the new target applica-
tion domain. Consistently, the interaction patterns should be identified in accordance
with this new architecture.

References

1. Almeida, J.P.A., Iacob, M.E., Jonkers, H., Quartel, D.: Model-Driven Development of
Context-Aware Services. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006. LNCS,
vol. 4025, pp. 213–227. Springer, Heidelberg (2006)

www.manaraa.com

220 L.M. Daniele, L.F. Pires, and M. van Sinderen

2. Almeida, J.P.A.: Model-Driven Design of Distributed Applications. Ph.D. thesis, Univer-
sity of Twente, Enschede, The Netherlands (2006)

3. Daniele, L., Ferreira Pires. L., van Sinderen, M.: Interaction Patterns for Refining Behaviour
Specifications of Context-Aware Mobile Services. In: Proceedings of the 4th International
Workshop on Model-Driven Enterprise Information Systems (MDEIS 2008), Barcelona,
Spain, June 2008, pp. 64–76. INSTICC Press (2008)

4. Daniele, L., Ferreira Pires. L., van Sinderen, M.: Context Handling in a SOA Infrastructure
for Context-Aware Applications. In: Proceedings of the 2nd International Workshop on
Architectures, Concepts and Technologies for Service Oriented Computing (ACT4SOC
2008), Porto, Portugal, July 2008, pp. 27–37. INSTICC Press (2008)

5. Daniele, L., Ferreira Pires. L., van Sinderen, M.: Live Contacts Case: from Service Speci-
fication to Service Design. A-MUSE project deliverable D2.27 (2008)

6. Eclipse Modeling Framework Project (EMF),
 http://www.eclipse.org/modeling/emf

7. Eissen, S.M., Stein, B.: An MDA Approach to Implement Personal IR Tools. In: 18th In-
ternational Conference on Database and Expert Systems Applications (DEXA 2007),
pp. 259–263. IEEE Computer Society Press, Los Alamitos (2007)

8. Fink, T., Koch, M., Pauls, K.: An MDA Approach to Access Control Specifications Using
MOF and UML Profiles. In: The First International Workshop on Views on Designing
Complex Architectures (VODCA 2004). Electronic Notes in Theoretical Computer Sci-
ence, vol. 142, pp. 161–179 (2006)

9. Freeband A-MUSE Project, http://a-muse.freeband.nl
10. Grizzle Home, http://isdl.ctit.utwente.nl/tools/grizzle
11. Heerink, L., Quartel, D.: Domain Specific Language for Context-Aware Mobile Services.

A-MUSE project deliverable D1.13 (2007)
12. ISDL Home, http://isdl.ctit.utwente.nl
13. Jones, V., Rensink, A., Ruys, T., Brinksma, E., van Halteren, A.: A Formal MDA Ap-

proach for Mobile Health Systems. In: Proceedings of the Second European Workshop on
Model Driven Architecture (MDA) with an emphasis on Methodologies and Transforma-
tions (EWMDA 2004), Computing Laboratory, University of Kent, Canterbury, Kent CT2
7NF, UK, Canterbury, pp. 28–35 (2004)

14. Live Contacts Home, http://livecontacts.telin.nl
15. Ter Hofte, G.H., Otte, R.A.A., Kruse, H.C.J., Snijders, M.: Context-Aware Communica-

tion with Live Contacts. In: Conference Supplement of Computer Supported Cooperative
Work (CSCW 2004), Chicago, USA (November 2004)

16. McNeile, A., Simons, N.: Methods of Behaviour Modelling: A Commentary on Behaviour
Modelling Techniques for MDA. Metamaxim Ltd Home,

 http://www.metamaxim.com/download/documents/Methods.pdf
17. Medini QVT: IKV++ Technologies Home, http://www.ikv.de
18. Object Management Group: MDA-Guide, Version 1.0.1, omg/03-06-01 (2003)
19. Uchitel, S., Brunet, G., Chechick, M.: Behaviour Model Synthesis from Properties and

Scenarios. In: Proceedings of the 29th International Conference on Software Engineering
(ICSE 2007), Minneapolis, USA, May 2007, pp. 34–43. IEEE Computer Society Press,
Los Alamitos (2007)

www.manaraa.com

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 221–236, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Model Driven Approach to the Analysis of Timeliness
Properties

Mohamed A. Ameedeen1, Behzad Bordbar1, and Rachid Anane2

University of Birmingham, Birmingham, UK
{M.A.Ameedeen,B.Bordbar}@cs.bham.ac.uk

2Coventry University, Coventry, UK
R.Anane@coventry.ac.uk

Abstract. The need for a design language that is rigorous but accessible and in-
tuitive is often at odds with the formal and mathematical nature of languages
used for analysis. UML and Petri Nets are a good example of this dichotomy.
UML is a widely accepted modelling language capable of modelling the struc-
tural and behavioural aspects of a system. However UML lacks the mathemati-
cal foundation that is required for rigorous analysis. Petri Nets on the other
hand have a strong mathematical base that is well suited for analysis of a sys-
tem but lacks the appeal and ease-of-use of UML. Design in UML languages
such as Sequence Diagrams and analysis in Petri Nets require on one hand some
expertise in potentially two incompatible systems and their tools, and on the
other a seamless transition from one system to the other. One way of addressing
this impediment is to focus the software development mainly on the design lan-
guage system and to facilitate the transition to the formal analysis by means of a
combination of automation and tool support. The aim of this paper is to present
a transformation system, which takes UML Sequence Diagrams augmented
with time constraints and generates semantically equivalent Petri Nets that pre-
serve the timing requirements. A case study on a small network is used in order
to illustrate the proposed approach and in particular the design, the transforma-
tion and the analysis processes.

1 Introduction

One of the most pressing tasks facing software developers in general and software
engineers in particular is the development of software tools that support an integrated
approach to the design and the analysis of software systems. The design of a system
may be considered as an essentially cognitive activity with a focus on clarity, while its
analysis is usually firmly grounded on mathematics and relies often on formal repre-
sentations and formal processing. The tension that results from this dichotomy has
presented a serious challenge for the deployment of existing software tools in both
areas. This difficulty is further compounded by the lack of interoperability between the
tools associated with each phase. There is a clear need for the development of tools and
frameworks that can reconcile the goals of the design and the analysis processes [1-3].

On the design side the Unified Modelling Language (UML) has been a focal point
of activity in the software design community. Its rich constructs have conferred to

www.manaraa.com

222 M.A. Ameedeen, B. Bordbar, and R. Anane

UML a privileged role in designing software systems in a variety of domains such as
network, business modelling and security [4]. One shortcoming of UML is however
its inability to support the model analysis process.

The requirements for the formal analysis of software systems have been met by the
introduction of a wide range of formal languages which are well suited for analysis,
among them Alloy [5], Z [6] and Petri Nets (PN) [7]. In providing support for design
and analysis, one common approach is to create the design in UML languages and
transform it into a formal representation for analysis. For example, UML2Alloy
makes use of Alloy for the analysis of a model which is captured in UML class dia-
grams and OCL [3]. The analysis performed in the Alloy framework involves solving
logical constraints on the model. Although Alloy is useful for the analysis of the static
aspects of a design but it is not particularly suitable for behavioural modelling [3].
This limitation is one of the reasons that led developers to rely on formal languages
such as Petri Nets. Petri Nets are suitable for analysis of behavioural aspects of mod-
els such as deadlock detection, liveness and reachability. Their usefulness has also
been enhanced by the availability of tools such as PIPE [8] and CPNTools [9].

The gap between the design and analysis in this respect can be bridged by using
Model Driven Development (MDD) model transformation as outlined in [10]. The
proposed model transformation addresses this issue by combining the strengths of the
two languages: the specification of the behaviour of a system is formulated in UML
Sequence Diagrams and the analysis is performed on Petri Nets. The transition from
UML to Petri Nets is achieved via a transformation process, which takes a model of
Sequence Diagrams and automatically generates the equivalent Petri Net model. The
model can subsequently be analysed with Petri Net tools. Figure 1 gives a high-level
description of this process. The transformation has already been covered in a previous
work by the development of a model driven development (MDD) model transforma-
tion tool, SD2PN [10]. As an initial stage in the development of the framework it did
not include timing capabilities.

SD2PN

Sequence
Diagrams

Petri Nets

Designer

modelling

analysis result

analysis

Fig. 1. Overview of the Model Transformation

The contribution of this paper is extending the model transformation in [10] with
timing constraints, as part of a framework for software development. The main ad-
vantage of this extension is the application of the tool to the analysis of time sensitive
systems, such as the modelling of Quality of Service (QoS) and its validation. The
proposed framework is supported by a case study on a QoS specification and analysis
in a Personal Area Network (PAN). UML Sequence Diagrams are used to model parts
of the IEEE 802.11 protocol. The model is then transformed into Petri Nets and

www.manaraa.com

 A Model Driven Approach to the Analysis of Timeliness Properties 223

analysed using relevant Petri Net tools for calculating the maximum waiting time for
a station in the PAN.

The remainder of the paper is organized as follows. Section 2 provides some back-
ground information on MDD, UML and Petri Nets. Section 3 presents a summary of
previous work [10] and its extension. Section 4 describes the proposed tool. Section 5
deals with a case study based on the PAN and its analysis in Petri Nets. Section 6
provides a discussion and outlines some further work. Section 7 concludes the paper.

2 Preliminaries

This section introduces some preliminary material regarding Unified Modelling Lan-
guage, Petri Nets, Model Driven Development and their role in the transformation
process.

2.1 Unified Modelling Language

The function of a model is to capture a view of the system. In software engineering
models are abstractions of a physical system which has a specific purpose [11]. Uni-
fied Modelling Language (UML) is a family of languages, which is widely accepted
as the de facto standard for software modelling. UML models can be used to specify
the structure of the system, its behaviour and the constraints that the system must
adhere to. This includes constraints related to the timing of the occurrence of events.

Models in UML are instances of metamodels. A metamodel includes system ele-
ments, their relationships and a set of rules to which every model must conform in
order to be well defined. In this paper Sequence Diagrams are used as the main mod-
elling language for describing the behaviour of a system.

Sequence Diagrams. Sequence Diagrams are used to define the interactions between
objects and the flow of events within a system. They are based on Message Sequence
Charts which are extensively used to capture scenarios for distributed telecommunica-
tion systems. Figure 2 is a small metamodel for Sequence Diagrams, adapted from
[10], and will be used throughout this paper for explanation purposes. The metamodel
of Figure 2 extends the metamodel used in our previous work [10]. However, while
[10] presented a metamodel for general Sequence Diagrams, this paper presents an
extension that enables the Sequence Diagrams to be augmented with timing con-
straints while still adhering to the UML 2.1 standards. The shaded boxes in the
metamodel in Figure 2 depict these time related extensions.

Time Properties. The shaded elements in the metamodel of Figure 2 depict the pre-
viously mentioned extension that signifies the addition of time properties into Se-
quence Diagrams. These elements are adapted from "Common Behaviors", chapter 13
of the UML 2.1 Superstructure [11]. IntervalConstraint, TimeConstraint and Dura-
tionConstraints are all specifications of the class Constraint and they are used to de-
fine particular types of constraints. TimeConstraint and DurationConstraint refer to
TimeInterval and DurationInterval respectively. An Interval is used to specify the
range between two ValueSpecifications through a maximum and minimum value.

www.manaraa.com

224 M.A. Ameedeen, B. Bordbar, and R. Anane

InteractionFragment

Interaction EventOccurrence CombinedFragments

InteractionOperator :
InteractionOpetratorKind

InteractionOperand

Lifeline

Message MessageEnd

GeneralOrdering InteractionConstraint

Constraint

<<enumeration >>
InteractionOperatorKind

Alt
Opt
Break
Par

+coveredBy

+fragment

+enclosing
Interaction

+fragment
(ordered)

+interaction

+interaction

+covered

+message

+sendMessage

+receiveMessage

+sendEvent

+receiveEvent

+before +after

+toBefore+toAfter

+operand

+guard

+generalOrdering

*
*

0..1

1

1

* 0..1

0..1 0..1

0..1

* *

11

0..1

1

TimeConstraint

DurationInterval

Duration

TimeInterval

Interval

IntervalConstraint

DurationConstraint

+specification

+specification

0..1

0..1
1

1

* *

1 1+min +max

min : Float
max : Float

Fig. 2. Sequence Diagram Metamodel

These values are inferred as float instead of ValueSpecification as to keep the meta-
model to a minimum. While Intervals have a maximum and minimum value, Duration
“defines a value specification that specifies the temporal distance between two time
instants” as described in page 437 of [11]. This is also evident in [13] where Douglass
interprets that an Interval is not a length of time, but rather a start and end point of a
time frame while Duration is a relative time measure that has a scalar value independ-
ent of the start time. Douglass further noted that time constraints are syntactically
represented textually inside curly brackets, which is also evident in page 59 of [11]

p1 p2t1

p4 t2 p3Place

Token Immediate
Transition

Arc

Timed
Transition

[]θ

[]3, +θθ

m1

m2

DurationConstraint

{ }θ
{ }3... +θθ

(a) (b)

Fig. 3. Examples of a (a) Sequence Diagram and (b) its equivalent Petri Net

Störrle [14] interprets the concept of time in UML 2.0 Sequence Diagrams as di-
vided to two types; the first of which is preserving the state of the system for a certain
duration or a time interval while the second represents the duration for a single event
to occur. Both these types can be represented by intervals between pairs of event
occurrences. This is consistent with UML 2.1 since page 482 of [11] also describes
Duration to be “always between occurrences”.

Figure 3 (a) shows an example of a Sequence Diagram that features both types of
time constraints. The interval between m1 and m2 denoted by θ shows that the state

after m1 is completed is preserved for the duration of θ while the occurrence of mes-

sage m2 takes between θ and θ +3 to occur, where θ is a constant.

2.2 Petri Nets

Petri Nets are a mathematical and graphical modelling language, which can be applied
to complex systems. Petri Nets can be used to model a diverse set of behaviour

www.manaraa.com

 A Model Driven Approach to the Analysis of Timeliness Properties 225

including parallel, asynchronous, concurrent, hierachical and stochastic as well as
dynamic behaviours [7]. Similarly to Sequence Diagrams, a Petri Net can model the
flow of events in a system graphically. The formal and mathematical nature of Petri
Nets can be used to overcome the limitations of Sequence Diagrams with respect to
analysis.

Petri Net

Place Transition

Marking

Mark

Arc

Time Constraints Interval

Immediate
Transition

Timed Transition
tokens: Integer

lowerBound : float
upperBound : float

+in +in+out +out* * * *

1 1 1 1

Fig. 4. Petri Net Metamodel

Figure 4 shows the metamodel of a Petri Net, which will be used throughout the
paper. This metamodel is adapted from [10] and enhanced with timing properties
(shaded elements). The model elements will be explained in terms of an example
specified in Figure 3 (b).

The example depicts a Petri Net that models the behaviour captured in the Se-
quence Diagram of Figure 3 (a). This Petri Net consists of 4 places and 3 transitions
that are all connected by arcs. An arc in a Petri Net serves as a connector between
places and transitions and may not connect 2 places or 2 transitions.

A transition in the Petri Net has input places and output places, which are places
that have arcs in and out of the transition respectively. A transition is enabled and
ready to fire when all of its input places have at least a token each. Tokens, as pre-
sented in Figure 3 (b), are depicted as filled circles contained inside places. When a
transition fires, a token will be removed from each of the input places and added into
one of the output places. For further information on Petri nets see [7]. The shaded
parts of Figure 4 are extension of the conventional Petri Net metamodel in [10] by
including time properties, which are explained as follows.

Timed Petri Nets. Timed Petri Nets are extensions to the conventional Petri Nets by
the inclusion of timing information such as the time associated to the firing of transi-
tions. There are different flavours of Timed Petri Nets. In this paper, the Timed Petri
Net with closed intervals as outlined in [15] are used. The timing information in the
metamodel are inferred from the Petri Net tools where [8] shows the existence of two
distinct types of transitions and [16] states that each time marking is modelled via
closed intervals. These intervals are defined via specific upper and lower bounds
attached to a transition. For a transition to fire, firstly it must be enabled. Secondly,
from the moment it gets enabled, a clock starts; the transition can fire when the value
of the clock is within the interval. An example of a timed transition is shown in Figure
3 (b) where the transition t2 has a time constraint with the closed interval [θ ,θ +3].
The transition t2 can only fire under two conditions; it must be enabled and the clock

www.manaraa.com

226 M.A. Ameedeen, B. Bordbar, and R. Anane

must be between θ and θ +3. For more information regarding Timed Petri Nets,
readers are referred to [15].

The graphical representation of Timed Petri Net also differs slightly from the Petri
Net used in [10]. In this paper, the immediate transitions or transitions without time
constraints are depicted as black rectangles while the timed transitions are depicted as
white rectangles; both of which are shown in Figure 3 (b) This is to provide a contrast
between the two types of transition although semantically, an immediate transition is
equivalent to a timed transition with an interval of [0, 0]. For timed transitions, the
interval is shown in a bracket by the label of the transitions, with a comma separating
the upper and lower bound. In a scenario such that the upper and lower bounds are the
same i.e. [50, 50]; it is abbreviated as [50]. Each of the upper and lower bound must
be of type float as inferred from the Sequence Diagrams.

The inclusion of time constraints in Petri Nets enhances their capability for model-
ling time-sensitive systems. Moreover, with the benefit of using existing Timed Petri
Net tools such as CPNTools [9] and PIPE [8], time analysis could take place, thus
making it an ideal destination model in an MDD model transformation.

Petri Net Analysis. The mathematical nature of Petri Nets creates a strong base for
various types of analysis. Murata [7] outlines a number of analysis methods how they
relate to the problems in designing an enterprise system. Among others, Reachability
analysis is used to study the dynamic properties of a system i.e. how taking one action
may effect the chances of an event happening in the future. A Boundedness analysis is
used to check the effect of the system to the buffers and registers for storing interme-
diate data while a Liveness analysis checks the system for deadlocks. All these analy-
sis and more can be performed on general Petri Nets and are supported by tools such
as CPNTools [9], PIPE [8] and various other tools.

While the analysis capabilities of general Petri Nets focus on the structural and
behavioural properties of a system, the addition of time properties to the Petri Nets
allows for performance analysis as well. A Cycle-time analysis could be used to de-
termine the duration for a complete sequence of action in the system while a tool such
as CPNTools [9] can be used for computing the amount of time that separates two
events, i.e. time between requesting access to a resource and getting the resource.
Various Petri Net tools also provide a platform for other performance analysis such as
average time, standard deviations, confidence intervals and throughput analysis as
described in [8, 16].

2.3 Model Driven Development

One of the aims of Model Driven Development [17] is to promote the role of model-
ling in software development. Central to the MDD is the process of Model Transfor-
mation, which automatically generates a new model from an existing one. Figure 5
depicts an outline of MDD and the process of Model Transformation. A number of
Transformation Rules are used to define how various elements of one metamodel
(source metamodel) are mapped into the elements of another metamodel (destination
metamodel). The process of Model Transformation is carried out automatically via the
software tools which are commonly referred to as Model Transformation Frameworks
[18-20].

www.manaraa.com

 A Model Driven Approach to the Analysis of Timeliness Properties 227

Fig. 5. Model Driven Development

A typical Model Transformation Framework requires three inputs: source meta-
model, destination metamodel and transformation rules. For any instance of the
source metamodel, the Model Transformation Framework executes the rules to create
an instance of the destination metamodel. One way to express such rules is through
Query/View/Transformation [21]. QVT is a standard for expressing MDD model
transformations governed by the Object Management Group (OMG). Further reading
on QVT could be found in [21].

3 Model Transformation

This section recalls the model transformation in [10] and discusses the extensions
made to it to enable the analysis of timeliness properties using MDD. SD2PN [10]
used a rule-based approach to map Sequence Diagrams into conventional Petri Nets.
This model transformation had three stages; Decomposing Sequence Diagrams into
fragments, transforming each fragment into Petri Net blocks and putting together the
blocks of Petri Nets. A brief outline of the five transformation rules in SD2PN is
given below.

Figure 6 shows the transformation rules used in SD2PN. Rule 1 describes the trans-
formation of a message fragment into a block of Petri Net as shown in Figure 6. Rule
2 in refers to the CombinedFragment with the InteractionOperatorKind alternative
while Rule 3 refers to option. Page 468 of [11] describes an option with with a sole
operand to be semantically equivalent to an alternative where the second operand is
empty, which will be the default for Rule 3. The guards for these CombinedFragments
can be directly transformed from the sequence diagram fragment and incorporated as
guards on the respective transitions. However, Timed Petri Net tools are not equipped
to consider the guards as constraints and this limitation is a course for future research.
Rules 4 and 5 refer to the InteractionOperatorKind break where the node X signifies
the terminal node and parallel fragment, respectively.

The snippet of QVT given for Rule 3 is an example of how this model transforma-
tion could be carried out. In line 11, the type of the InteractionOperator is checked,
and the enumeration for InteractionOperatorKind option is 1. The Petri Net is then
built according to the diagram of Rule 3.

In this paper, the five rules of SD2PN are refined with time properties to make
them compliant with the new metamodels. Referring to section 1 of Figure 6, Rule 1
is used to transform every message in a Sequence Diagram into a Petri Net block

www.manaraa.com

228 M.A. Ameedeen, B. Bordbar, and R. Anane

g p g p y

(1) (2)

(3)

(4)

(5) (6)

s1

Opt_fragment1

Opt_fragment2

opt

ph1 ph2

s2

t1 t2

t3 t4

SD2PN
Rule 3

s1

Alt_fragment 1

Alt_fragment 2

alt

ph1 ph2

s2

t1 t2

t3 t4

SD2PN
Rule 2

s1

Break_fragment1

break

ph1

s2

t1 t2

t3

XSD2PN
Rule 4

s1

Par _fragment 1

Par _fragment 2

par

ph1 ph2

s2

t1

t2

SD2PN
Rule 5

s2

m t
SD2PN
Rule 1

s1

Fig. 6. Five Rules of SD2PN and example of QVT

consisting of two places, s1 and s2, and a transition, t. By adding a time constraint to
this rule, the transition t is given an Interval constraint with a maximum and mini-
mum value acting as its upper and lower bound. There are three possible scenarios
that could provide different outcomes to the rule. If a message has an interval with
different maximum and minimum values associated to it i.e. {10...30}, the transition t
in the resulting Petri Net block will be designated as a Timed Transition with a closed
interval [10, 30]. Similarly, if a message has a duration associated to it i.e. {20}, the
transition t in the resulting Petri Net block will be designated as a Timed Transition
with a closed interval [20, 20] or abbreviated as [20]. However, if a message does not
have any time properties attached to it, the transition t in the resulting Petri Net block
will be designated as an Immediate Transition.

Rules 2 through 5, depicted by sections 2 through 5 in Figure 6 respectively, refer to
the transformation of each InteractionOperators into a Petri Net block. However, since
there are no intervals or durations that are attached to InteractionOperators, every tran-
sition in the resulting Petri Net block are designated as Immediate Transitions.

This paper also introduces a new rule for SD2PN, Rule 6 as illustrated in Figure 7,
to map time properties in Sequence Diagrams that are not attached to a message into a

www.manaraa.com

 A Model Driven Approach to the Analysis of Timeliness Properties 229

Petri Net block. This rule, although resulting in a Petri Net block similar to Rule 1,
only has two possible scenarios. In cases where exists an interval in the Sequence
Diagrams i.e. {10...30}, the transition t in the resulting Petri Net will have an interval
of [10, 30] where else if there exist a duration in the Sequence Diagram i.e. {20}, the
transition t will have an interval of [20].

s2

SD2PN
Rule 6

s1

{ }θ []θ

Fig. 7. Rule 6 of SD2PN

Once all the fragments are transformed into Petri Net blocks, they are amalgamated
using two operations, which are referred to as morph and substitute defined in [10].
Morph is used for aggregating two Petri Net blocks to create larger Petri Nets. It can
be seen that each Petri Net block has a single input and output place. Invoking morph
with two Petri Net blocks merges the former’s output place with the latter’s input
place. Substitute is used to replace a placeholder in the Petri Net blocks, such as
ph1and ph2 in sections 2 through 5 of Figure 6 with a different Petri Net block. This
will be done repeatedly until there are no longer any placeholders left in the block.

It is shown in Theorem 1 of [10] that the model transformation generates only Free
Choice Petri Nets that are predominantly used for effective and efficient analysis in
enterprise system [2]. This result is preserved in this paper since the same Petri Net
blocks are used. More information on SD2PN and the proof that it generates Free
Choice Petri Net are available in [10].

4 Transformation Tool

Figure 8 depicts the architecture of the tool by showing the stages involved in the
execution of a transformation [22]. The tool makes use of the XMI [23] representa-
tions of Sequence Diagrams which is provided by all mainstream UML tools such as
[24, 25]. Using an XMI parser, the tool creates Java objects based on the Sequence
Diagram metamodel. By utilizing SiTra [26], the tool transforms the Sequence Dia-
gram objects into Petri Net objects based on the transformation rules.

UML Tools

XMI Parser
SiTra

XML Writer

Petri Net
Tools

SD2PN Transformer

Fig. 8. SD2PN Transformer

www.manaraa.com

230 M.A. Ameedeen, B. Bordbar, and R. Anane

Finally, the functions morph and substitute introduced in [10] are used to aggregate
the Petri Net objects, and thus create the Petri Net which corresponds to the original
Sequence Diagram. The resulting Petri Net model can then be analysed by using a
chosen Petri Net tool. The XML writer for the tool can be customized to correspond
with a specific tool. This allows the designer to create a system completely in Se-
quence Diagram while still taking advantage of the analytical capabilities of Petri Net.

5 Case Study

This section presents a case study, which involves the specification and analysis of
the Quality of Service (QoS) of a Personal Area Network (PAN) via SD2PN. The
case study demonstrates the transformation of Sequence Diagrams into Timed Petri
Nets and the use of the created Petri Nets to analyse QoS properties such as maximum
delay.

5.1 Case Description

Figure 9 depicts a simplified PAN that has two stations and a Wireless Router that
serves as an access point to the internet. In the router, the basic IEEE 802.11 Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol is used [27].
Due to space constraints only the elements of the protocol that are relevant to QoS
will be considered.

CSMA/CD assigns different waiting time to packets in order to manage the access
of the stations to the medium. There are three different waiting times for various types
of packets. The shortest waiting time for medium access is called Short inter-frame
spacing (SIFS) which is used for short control messages or polling responses. The
waiting time for time-bounded service such as a poll from the access point is consid-
ered PCF inter-frame spacing (PIFS) and the longest waiting time and lowest priority,
DCF inter-frame spacing (DIFS) is used for asynchronous data services. There is a
mechanism called contention window (CW), which is introduced in order to facilitate
collision avoidance. The contention window makes use of an integer value that starts
with CWmin = 7 and doubles every time a collision occurs. Every time a station tries to
gain access to the medium, a random number is generated between 0 and CW and is
added to the waiting time. This ensures that the stations do not send their packets at
the same time. CW is doubled for every collision that occurs to accommodate a larger
number of stations vying for the access of the medium. Readers are referred to [27]
for more information.

Station 2

Station 1

Internet

Wireless Router

Medium

Fig. 9. Personal Area Network (PAN)

www.manaraa.com

 A Model Driven Approach to the Analysis of Timeliness Properties 231

Several assumptions were made in this case in order to simplify matters and pro-
vide a better understanding of the tool. Firstly, the waiting time for all packets is con-
stant and all packets are categorized as DIFS. Secondly, the CW is constant and does
not increase, and since there are only two stations, the CW would be minimum, i.e.
CWmin = 7. Thirdly, the packets are dropped after the unsuccessful tries from the sta-
tion and each station sends only one packet. These assumptions do not invalidate the
results of the analysis by any means; they just limit the scope of this case study.

5.2 Interaction Sequence Diagram

The Sequence Diagram in Figure 10 (a) gives an overview of how a station sends a
packet to the medium in the IEEE 802.11 protocol. This Sequence Diagram also fea-
tures the time properties in regards to the events that occur. The medium access con-
trol (MAC) layer of the station receives a packet from an application and registers it.
It is then idle for the duration of the waiting time, which in the case of DIFS is 50µs.
After idling, the MAC checks the status of the medium. If the medium is free, the
station is able to send the packet across to the medium. However, if the medium is
busy, the station will have to wait until the medium is free before idling again for
50µs. This is followed by a random time slot generated based on the CW, which in
this case is between 1 and 7. Since a standard time slot is 20µs, this means that an
additional waiting time of between 0 to 140µs referred to as the elapsed backoff time
(boe) for a total waiting time of between 120µs and 240µs as shown in the Sequence
Diagram. The MAC then checks the status of the medium again before either sending
the packet across or waiting again. If the medium becomes busy while the station is
still counting down the boe, then the counter stops and the remaining time is called
residual backoff time (bor). As a result, the next waiting time will only be incre-
mented by the value of bor and this increases the probability of a successful attempt
from the stations’ point of view. Note that the maximum waiting time in Figure 10 (a)
is reduced with every attempt.

The diagram is a simplified overview of the events that take place. In reality, each
of the events has multiple sub-events that occur in the background. For example, the
details for the calculation of boe and bor are not shown in the Sequence Diagram and
are all grouped under the event waitForAccess.

5.3 Model Transformation

A set of Petri Nets was generated by taking the Sequence Diagrams in Figure 10 (a)
as the source model in SD2PN; they represent the process of sending packets in IEEE
802.11. Figure 10 (b) gives the overview of the result of the transformation process as
a mapping from the Sequence Diagram in Figure 10 (a). The Petri Nets preserve the
time constraints specified in the sequence diagrams and will allow for various forms
of QoS analysis to be performed.

The Petri Net in Figure 10 (b) models the behaviour of one station trying to gain
access to the medium to send a packet. In cases where more than one station are try-
ing to access the medium, the Petri Net in Figure 10 (b) is duplicated for each station
and is synthesized i.e. merged using a bottom-up synthesis technique [28]. Although
the tool does not currently support synthesis, we are actively working towards its
integration into the system.

www.manaraa.com

232 M.A. Ameedeen, B. Bordbar, and R. Anane

p0

p1

idle [50]

p2

checkStatus

If free

p4

sendPacket

p5

p3

If busy

registerPacket

p6

waitForAccess
[120,240]

If free

p8

sendPacket

p9

p7

If busy

waitForAccess
[120,240]

If free

p12

sendPacket

p13

p11

If busy

p14

If free

p16

sendPacket

p17

p15

If busy

p18

dropPacket

p19

p10

Station Medium

registerPacket

packet

idle {50}

checkStatus

return status

sendPacket

waitForAccess {120...240}

sendPacket

waitForAccess{120 ...220 }

sendPacket

waitForAccess{120 ...200 }

sendPacket

dropPacket

If free

If free

If free

If free

If busy

If busy

If busy

If busy

(a) (b)

alt

alt

alt

alt

waitForAccess
[120,240]

Fig. 10. Model of (a) Sequence Diagram for a station in PAN and (b) its equivalent Petri Net

5.4 Model Analysis

The Petri Net that results from the transformation lends itself to various types of
analysis such as deadlock detection, liveness and safeness analysis [29]. Time sensi-
tive analysis such as tangible states analysis and throughput analysis are also possible
[8]. In this case study, throughput analysis will be used to analyse maximum delay as
one aspect of QoS.

The maximum delay is calculated based on how long it takes for a station to gain
access to the medium (sendPacket). For the case of a single station shown in Figure 10
(a), the maximum delay will be 50µs since there is no contention with other stations.
However, in the case where there are two stations competing for access to the medium,
the maximum waiting time for a station is 290µs as shown in Figure 11. This calcula-
tion is based on the flow of events in the Petri Net. Since there are two stations, the
Petri Net in Figure 10 (b) is duplicated to model the second station. After registering
the packet (firing of registerPacket transition), in Figure 10 (b), both stations will face
a mandatory idle time of 50µs (firing of idle transition) before checking the status of
the medium. Following that, only one station will be able to gain access to the medium
while the other will have to wait between 120µs and 240µs (firing of waitForAccess
transition), thus a maximum waiting time of 290µs (= 240µs + 50µs).

www.manaraa.com

 A Model Driven Approach to the Analysis of Timeliness Properties 233

Fig. 11. Maximum Waiting Time analysis result

The graph in Figure 11 indicates the maximum delay that a station may face before
gaining access to the medium to send a packet. The number of stations is limited to 7
to ensure there are no collisions; this is based on the previous assumption that the CW
does not increase. Such information can be used to analyse the choice of protocols for
interaction within the system.

6 Discussion

Many researchers have highlighted the trade-off between the ease of use of UML and
its lack of precision. Recent work in this area has been marked by a concerted effort
aimed at enhancing UML by incorporating formal methods techniques [30-34]. Forma-
lisation offers many advantages including the ability to analyse a model via techniques
such as model checking and theorem proving in order to ensure correct specification.
The introduction of logical and timing constraints into a model, in particular, facilitates
the investigation of non-functional aspects of the system such as QoS and security. It
has been noted however that formalisation is often achieved at the expense of simplic-
ity and that the main challenge is to strike a balance between precision and ease of use.

Formalising UML is an active area of research. For example, Evans et al [30] pro-
pose the use of Z as the underlying semantics for Class Diagrams to deal with the
static aspects of models. Küster-Filipe [35] presents a semantics for Sequence Dia-
grams based on Labelled Event Structures which are used to prove the correctness of
SD2PN [10]. The approach adopted in this paper, although it promotes the use of
formal methods, differs from the latter in a significant way. It relies on model trans-
formation and formal method analysis tools to facilitate automated analysis.

Model transformation has also received considerable attention. Kim [32] proposes
transforming both Class Diagrams and State Machines into Object-Z using MDA
technology. To the best of our knowledge, this transformation has not been imple-
mented yet. A similar approach is adopted in [34] and [33] which transform Class
Diagrams and OCL Constraints into the formal language B [36]. In particular, [33]
proposes a UML profile for B called UML-B and the automation of the transforma-
tion with a tool called U2B. A major feature of of this approach is that it makes use of
B provers to check the conformance of the operations’ pre and post conditions to the
invariants of the model. The main difficulty with provers, as underlined in [33], is that

www.manaraa.com

234 M.A. Ameedeen, B. Bordbar, and R. Anane

even semi-automatic provers assume a substantial amount of knowledge from the
user. In contrast the approach presented in this paper aims to limit the reliance on
formal method expertise such that a designer may model a system conveniently in
Sequence Diagram and still manage to use the analysis capabilities of Petri Nets.

The proposed framework transforms the UML Sequence Diagrams into Timed
Petri Nets and takes advantage of their suitability for formal analysis. The transfor-
mation produces Free Choice Petri Nets, which support the investigation of various
properties such as liveness, safeness and deadlocks detection [29]. It is possible to
integrate existing Petri Net tools into the tool set, so that for a created UML Se-
quence Diagram, through a chain of tools, the user can automatically receive feed-
back on, among others, the liveness, safeness and deadlock freeness of the model.
This combination of formalisms, tools and model transformations is bound to reduce
the cognitive load on users since a thorough understanding of the underlying formal
structure of the model is no longer required. Moreover, Free Choice Petri Nets are
also proving to be particularly suitable for the analysis of large-scale systems [1, 2],
an important feature that widens the scope of the application of the proposed frame-
work to encompass similar systems. In addition to the structural and behavioural
analysis, the time properties included in this paper will also enable performance
analysis to be conducted on the system. Analysis like maximum throughput, density
probability, interval, cycle time [8, 16] and many other time related analysis can be
carried out.

It is possible to augmenting Sequence Diagrams with logical constraints as pre and
post conditions for each execution of events. Such constraints can be expressed in
languages such as OCL [12] and mapped by extending the model transformation
presented in the paper. This would result in Coloured Petri Nets [7] which are an
extension of Petri Nets. Coloured Petri Nets have been investigated extensively and
various tools, such as CPNTools [9], have been developed for their analysis.

7 Conclusion

This paper has presented a framework of applying Model Driven Development for
transforming time augmented Sequence Diagrams into Timed Petri Nets. This model
transformation serves to bridge the gap between the design and analysis phases of a
system, thus enabling a designer to conveniently design a system in UML Sequence
Diagram while taking advantage of Petri Nets' strong mathemathical foundations to
analyse the model. Furthermore, the addition of time properties into the model trans-
formation allows for performance analysis such as execution time computation and
throughput analysis on top of the established structural and behavioral analysis capa-
bilities of Petri Nets. The presented approach has been evaluated successfully with the
help of an example of a Personal Area Network.

Acknowledgement. The authors wish to thank Behrang Saroui for his part in the tool
development.

www.manaraa.com

 A Model Driven Approach to the Analysis of Timeliness Properties 235

References

1. van der Aalst, W.M.P.: The Application of Petri Nets for Workflow Management. The
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

2. Vanhatalo, J., Volzer, H., Leymann, F.: Faster and More Focussed Control-Flow Analysis
for Business Process Models Through SESE Decomposition. In: Fifth International Con-
ference on Service Oriented Computing, pp. 43–55. Springer, Vienna (2007)

3. Anastasakis, K., et al.: UML2Alloy: a Challenging Model Transformation. In: ACM/IEEE
10th international confernece on Model Driven Engineering Languages and Systems
(2007)

4. Juerjens, J.: Secure Systems Development With UML. Springer, Heidelberg (2004)
5. Jackson, D.: Software Abstractions Logic, Language, and Analysis. MIT Press, Cambridge

(2006)
6. Spivey, J.M.: The Z Notation: a reference manual. Prentice Hall, Englewood Cliffs (2001),

http://spivey.oriel.ox.ac.uk/~mike/zrm/
7. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE 77(4), 541–580 (1989)
8. Bonet, P., et al.: PIPE v2.5: a Petri Net Tool for Performance Modeling, in XXXIii Con-

ferencia Latinoaméricana de Informática (2007)
9. CPNTools, Computer Tool for Coloured Petri Nets,

 http://wiki.daimi.au.dk/cpntools/
10. Ameedeen, M.A., Bordbar, B.: A Model Driven Approach to Represent Sequence Dia-

grams as Free Choice Petri Nets. In: 12th International IEEE Enterprise Distributed Object
Computing Conference (EDOC), München, Germany, pp. 213–221 (2008)

11. OMG, OMG Unified Modelling Language (UML) Superstructure 2.1 (2007),
http://www.omg.org

12. OMG, UML 2.0 OCL 2nd revised submission (2003), http://www.omg.org
13. Douglass, B.P.: Doing Hard Time: Developing Real-time Systems with UML, Objects,

Frameworks and Patterns. Object Technology Series. Addison Wesley, Reading (1999)
14. Störrle, H.: Trace Semantics of UML 2.0 Interactions, University of Munich (2004)
15. Wang, J.: Timed Petri Nets: Theory and Application. Springer, Heidelberg (1998)
16. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for modelling

and validation of concurrent systems. International Journal on Software Tools for Tech-
nology Transfer (STTT) (2007)

17. Stahl, T., Volter, M.: Model Driven Software Development; technology engineering man-
agement. Wiley, Chichester (2006)

18. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

19. Muller, P.A., Fleurey, F., J´ez´equel, J.M.: Weaving Executability into Object-Oriented
Meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713,
pp. 264–278. Springer, Heidelberg (2005)

20. Akehurst, D.H., et al.: SiTra: Simple Transformations in Java. In: ACM/IEEE 9th Interna-
tional Conference on Model Driven Engineering Languages and Systems (formerly the
UML series of conferences), Genova, Italy (2006)

21. OMG, MOF 2.0 Query/View/Transformation (QVT) Specification (2008),
 http://www.omg.org

22. Saroui, B.S.: Model Transformation from Sequence Diagrams to Petri Nets. University of
Birmingham, Birmingham (2008)

23. XMI, XML Metadata Interchange (XMI), v2.1 (2005), http://www.omg.org

www.manaraa.com

236 M.A. Ameedeen, B. Bordbar, and R. Anane

24. ArgoUML, ArgoUML web site (2005),
 http://sourceforge.net/projects/argouml

25. Poseidon. Poseidon for UML, from Gentleware (2006),
 http://www.gentleware.com/

26. Akehurst, D.H., et al.: SiTra: Simple Transformations in Java. In: ACM/IEEE 9th Interna-
tional Conference on Model Driven Engineering Languages and Systems (2006)

27. Schiller, J.H.: Mobile Communications. Pearson Education, London (2003)
28. Agerwala, T., Choed-Amphai, Y.-C.: A synthesis rule for concurrent systems. In: ACM

IEEE Design Automation Conference (1978)
29. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cambridge

(1995)
30. Evans, A.F., Robert, Grant, E.: Towards Formal Reasoning with UML Models. In: Pro-

ceedings of the OOPSLA 1999 Workshop on Behavioral Semantics (1999)
31. Kim, D., et al.: A UML-Based Metamodeling Language to Specify Design Patterns (2003)
32. Kim, S.-K.: A Metamodel-based Approach to Integrate Object-Oriented Graphical and

Formal Specification Techniques. University of Queensland, Brisbane (2002)
33. Snook, C., Butler, M.: UML-B: Formal modelling and design aided by UML. In: ACM

Transactions on Software Engineering and Methodology (2006)
34. Marcano, R., Lévy, N.: Transformation Rules of OCL Constraints into B Formal Expres-

sions. In: 5th International Conference on the Unified Modeling Language, Dresden, Ger-
many (2002)

35. Küster-Filipe, J.: Modelling concurrent interactions. Theoretical Computer Science 351(2),
203–220 (2006)

36. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

www.manaraa.com

A Hybrid Graphical and Textual Notation and
Editor for UML Actions

Anis Charfi, Artur Schmidt, and Axel Spriestersbach

SAP Research CEC Darmstadt
Darmstadt, Germany

Abstract. The aim of UML Actions is to allow detailed and platform
independent modeling of object-oriented behavior. However, behavior
modeling with UML actions is still not adopted due to three main rea-
sons. First, UML defines only the abstract syntax of the actions and
no concrete syntax. Second, users have to work directly with the very
complex meta-model of UML actions. Third, all existing tools do not
provide appropriate support for creating and working with action-based
behavior models. In this paper, we propose a hybrid language combining
the strengths of textual and graphical notations in one concrete syntax
for UML actions and present a supporting editor. We also report on a
user study that was conducted to evaluate the notation and the editor.

1 Introduction

In the theory of Model-Driven Architecture (MDA) [1], it should be possi-
ble to specify a software system including its structure and behavior at the
platform-independent modelling level (PIM), then refine the PIM to one or more
platform-specific models (PSMs), and after that generate code for different target
platforms and languages. However, in practice, only structure modeling is well
supported at the PIM level whereas behavior modeling has only limited support.
This is partly due to the lack of appropriate means in the Unified Modeling
Language (UML) until the version 1.5 for detailed behavior modeling (i.e., for
modeling the content of a method body at the PIM level). This situation gave
rise to MDA-light [2], which is the more prominent instance of MDA in practice.
In this approach, the PIM contains only the structural part of a system. The
PIM (or a transformed version of it) is used to generate code skeletons, in which
the behavior has to be inserted manually in a specific target language and in a
platform-specific way. Such an approach breaks the portability, interoperability,
and reuse objectives of MDA.

To support detailed behavior modeling, the OMG introduced the action
semantics specification since UML 1.5. Actions are primitives for modeling be-
havior independently of programming languages and platforms. Actions are con-
tained in UML Behavior, e.g. in a UML Activity that defines the behavior of
an operation. There are predefined actions for various purposes, e.g., to create
object instances, to call an operation, etc.

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 237–252, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

238 A. Charfi, A. Schmidt, and A. Spriestersbach

UML Action Semantics has the potential to fill the gap between MDA-light
and real MDA as it provides means for behavior modeling at the PIM level. Nev-
ertheless, there are still four problems that need to be tackled before behavior
modeling with UML actions becomes widely adopted. First, UML 2 does not
specify a concrete syntax for actions: it only states that actions should be rep-
resented by rectangles with rounded corners. This problem has been recognized
by the OMG, which issued a call for proposals requesting a concrete syntax for
UML actions [3]. Second, in lack of a concrete syntax the users have to under-
stand and work directly with the big and complex meta-model (or meta-muddle
as called in [4]) of UML. For instance, one needs to understand and know the
different types of input and output pins each action has and which ones must
be set depending on the action type. Third, the tool support for UML Actions
is very limited and only a few tools support the meta-model.

In this paper, we present a hybrid language combining the strengths of textual
and graphical notations and an editor that tackle the three problems discussed
in the last paragraph. This work was performed in the context of the EU project
VIDE [5], which focuses on methodologies and tools for behavioral modeling
especially at the CIM and PIM layers. Our contribution is three-fold. First,
we propose a visual notation for the most used actions. This notation hides
several complexities of the meta-model. Second, we present an editor supporting
the proposed notation and providing features that ease working with action
models such as auto-layouting and auto-completion. Third, we evaluated the
notation and the editor through a user study that compares learning and using
the notation and its editor with to learning and using a new textual programming
language.

The remainder of this paper is structured as follows: Section 2 gives some
background. Section 3 motivates the need for a notation for UML Actions and
better tool support. Section 4 presents the proposed notation and Section 5
presents the editor. Section 6 discusses the user study and its results. Section 7
studies related work and Section 8 concludes the paper.

2 Background

This section gives a brief introduction to MDA, UML Action Semantics, and the
PIM level language of VIDE.

2.1 Model-Driven Architecture

The MDA[1] development process is centered around models and model trans-
formations. It defines three main types of models that are refined gradually until
generating the application code. A Computation-Independent Model (CIM) is a
high-level domain model that defines the requirements and usage of the software
system without giving any details on how the system is implemented. The CIM
is then refined in to a Platform-Independent Model (PIM), which defines the
functionality of the software system in an abstract way without any platform-
specific details. The PIM is transformed, possibly using a Platform Description

www.manaraa.com

A Hybrid Graphical and Textual Notation and Editor for UML Actions 239

Model (PDM), into a Platform Specific Model (PSM). A PSM is a more con-
crete model that defines the system functionality for a specific platform. MDA
allows to model a software system once (at the PIM level) and then generate the
implementation to several target programming languages and target platforms.
The last step in the MDA process is the code generation out of the PSM model.

2.2 UML Action Semantics

Since version 2.0, UML has a more consolidated specification for Action Seman-
tics. UML actions are atomic primitives for behavior modeling that can be used
within activity diagrams. Actions are contained in UML Behavior, e.g. in a UML
Activity that defines the behavior of an operation. With actions it is possible to
specify the implementation of a method or constructor body at the PIM level.

An action has input pins and output pins, which allow the passing of data
between various actions by using object flow connections. The order of executing
the actions can be defined either using a Petri Net like flow concept (i.e., control
flow connections) or using nodes that structure the contained actions (such as
conditional node, sequence node, etc). UML 2 defines several classes of actions for
different purposes, e.g., for object manipulation (i.e., to create or destroy object
instances), for calling operations, for manipulating object properties or variables
(i.e., to read and set properties and variables), for manipulating associations
(i.e., to create and destroy links between objects), etc. UML does not specify a
concrete syntax for actions. It only states that they can be represented through
rectangles with rounded corners.

2.3 The VIDE PIM Language

In the context of the VIDE project, we defined a PIM level language that focuses
on behavioral models for business and data-intense applications. This language
uses UML actions together with OCL expressions and queries [6] as specified in
the Eclipse MDT project [7]. The VIDE PIM language covers most concepts of
UML 2 structural modeling, such as packages, classes, operations, properties, and
associations. Further, this language includes the following UML 2 action types:
invocation actions, object creation/destruction actions, link actions, structural
feature actions, and variable actions. Some action types are not in the scope of
VIDE namely actions for reading system state as all side-effect free queries are
expressed in OCL, actions for signal processing, and actions for changing the
classification of objects.

3 Problem Statement

In this section, we introduce a simple example that will be used throughout the
paper for illustration. Then, we discuss three problems that hinder the adoption
of UML actions for behavior modeling in practice.

www.manaraa.com

240 A. Charfi, A. Schmidt, and A. Spriestersbach

+orders : Order [*]

+calculateOrderTotalForCustomer(customer : String) : Integer

SimpleShop

+customerName : String

+calculateTotal() : Integer

Order

Fig. 1. The classes of the simple shop scenario

3.1 Motivating Example

Figure 1 depicts the classes of a simple shop scenario: the shop is represented
by the class SimpleShop. This class has a collection of orders of the type Order .
Each order belongs to a customer and provides a method to calculate its total.
The method calculateOrderTotalForCustomer will be used to illustrate behavior
modeling: it finds all orders belonging to the customer specified as parameter and
sums up the totals of his orders, which are returned by the method calculateTotal .
A reference implementation of the method calculateOrderTotalForCustomer in
Java is shown in Listing 1.

int calculateOrderTotalForCustomer(String customer) {
int total = 0;
for (Order order : orders) {

if (order.customerName.equals(customer)) {
total = total + order.calculateTotal ();

}}
return total;

}

Listing 1. Java implementation of calculateOrderTotalForCustomer method.

Although it is a small scenario, the implementation of the method calculate-
OrderTotalForCustomer contains iteration, a conditional statement, operation
invocation and other basic constructs that are usually used in programming.

3.2 Limitations of UML Action Semantics

With UML Actions it is now possible to model whole applications at the PIM
level. However, there are three problems that hinder the adoption and usage of
UML actions in practice.

Lack of Concrete Syntax for Actions. UML does not define a concrete syntax
for actions. The tool vendors also did not propose any more advanced concrete
syntax. E.g., in Topcased [8], a leading open source MDA tool, actions are rep-
resented by rounded rectangles with a label that is set by default to the type of
the action. In MagicDraw [9], a representative for commercial MDA tools, ac-
tions are represented in the same way with an additional stereotype indicating

www.manaraa.com

A Hybrid Graphical and Textual Notation and Editor for UML Actions 241

the type of the action. Having semantically different actions represented almost
in the same way hinders the understandability of action models especially when
these models get bigger. In addition, not all relevant information is immediately
visible in the notations of state of the art editors, e.g., in an AddVariableValue-
Action in Topcased the variable is not visible in the action representation. Such
information can only be seen/edited in a separate properties view.

The OMG has recognized that without a concrete syntax users will not adopt
UML actions. Therefore, it has issued a call for proposals requesting a textual
concrete syntax for the UML action language [3]. However, a textual notation
might not be appropriate for certain users such as modelers or domain experts
who have domain knowledge and an understanding of UML and its concepts,
but little experience in using textual programming languages. For those users a
graphical notation might be more appropriate.

Complexity and Size of the Meta-model. As UML does not define a concrete
syntax for UML actions, the users have to work at the abstract syntax level, i.e.,
they face directly all complexities of the UML meta-model and especially the
parts about actions and activity diagrams. The users must know all actions and
understand their properties. They must also know what input and output pins
each action has and what pins and properties must be set.

Insufficient Tool Support. In the context of the VIDE project, we have examined
many UML tools with respect to their visual notations for UML actions and the
user assistance during the creation of action models [10]. To demonstrate the
support available in state of the art editors Figure 2 shows the action models
of the method calculateOrderTotalForCustomer from the running example cre-
ated with MagicDraw UML version 16 (right) and with Topcased version 2.2
(left).

Looking at the two diagrams and comparing them to the Java version in
Listing 1, one sees that it is more difficult to find out what the action models do.
It takes more time to inspect the whole diagram as one has to follow the control
and data flows explicitly. To make the diagram more readable, the Topcased
user has to update the labels manually as they are set by default to the action
type. The users are not supported at all when they need to set properties or enter
expressions. Further, all pins (the little boxes adjacent to the actions) have to be
created manually. This requires good knowledge of the meta-model. The control
flow and data flow edges have to be created and connected manually as well. In
addition, the tools are not able to automatically layout whole diagrams in such
a way that they are readable. As a result, the user has to care about this burden
and to update the layout on changes, which can be very time-consuming.

A fourth problem that hinders the adoption of UML Action Semantics is the
lack of mappings to programming languages and also the lack of supporting
model compilers. This problem has been tackled in the context of the VIDE
project through the definition of mappings to languages such as Java [11] or
ODRA [12] and the implementation of supporting code generators.

www.manaraa.com

242 A. Charfi, A. Schmidt, and A. Spriestersbach

<<iterative>>
iterate over orders

test <<readStructuralFeature>>
customerName

object

result =
(OclAny::)

object

test result
target

body

<<addVariableValue>>
set new value of total

value

calculateTotal
(Order::)

result

target

<<readVariable>>
total

result
+

($OCL_Integer::) i

result

target

customer : $OCL_String

<<readStructuralFeature>>
orders

object

result

<<addVariableValue>>
initialize total variable 0

<<reply>>
return total variable

replyValue<<readVariable>>
total

result

<<readSelf>>
simple shop

result

The "total" variable
is contained in the
activity itself

order

Fig. 2. The method calculateOrderTotalForCustomer implemented using an activity
diagram in TOPCASED (left) and in MagicDraw (right)

4 A Hybrid Notation for UML Actions

In the proposed notation actions are realized as templates that contain place-
holders for expressions that correspond to frequently needed action properties
and/or pins. Thus, the frequently used action properties/pins are visible in the
notation and can be edited directly. As a result, the users do not have to know
all details of the UML meta-model that are relevant for a certain action and
the meta-model complexity is hidden. Since UML defines more than 40 different
actions, we defined a notation only for the actions included in the VIDE lan-
guage (cf. Sect. 2), i.e., actions for object creation, method invocation, access
and manipulation of object properties, as well as definition and manipulation of
variables. Further, our notation supports three structured control flow nodes for
specifying control flow. Data flow is not shown in the notation as it is expressed
indirectly through variables. The graphical representation of certain actions is
partly inspired by different UML diagrams.

Moreover, the proposed hybrid notation is inspired in several regards by tex-
tual notations. First, the notation constraints the placement of action to be
in a sequential order like a textual notation. Second, control flow is expressed

www.manaraa.com

A Hybrid Graphical and Textual Notation and Editor for UML Actions 243

implicitly via structured nodes and data flow is expressed indirectly via vari-
ables. These design decisions allow us to exploit the textual readership skills of
the users and also enable automatic layout. Scoping is indicated in our notation
by spatial containment.

In the following, we present the visual representation for selected actions.
A more comprehensive presentation can be found in [13], which also maps the
visual representation to the abstract syntax. Due to space limitations, we present
here the correspondence of visual syntax and abstract syntax only for the call
operation action.

4.1 Control Flow

Structural nodes are elements of the UML meta-model that define control flow
and which can contain further actions. Fig. 3 shows the graphical notation of
three such elements: sequence node, conditional node, and expansion region.

(a) Sequence node (b) Conditional node (c) Expansion region

Fig. 3. Visual notation for control flow nodes

A sequence node executes the nested elements sequentially according to their
order in the SequenceNode. It also defines the scope for variables as variables
are only accessible in the SequenceNode, in which they are defined and in its
child nodes. A conditional node realizes the conditional execution of a sequence
node (the “body”) based on a condition, which is a boolean expression that
can be viewed/edited. An expansion region allows to iterate over collections.
In the proposed notation, the user must specify an expression that identifies
the collection and the name of a temporary variable that will hold the value of
each collection item during the iteration. The nested sequence node including all
actions it contains will be executed for each item.

4.2 Basic Actions

The following actions provide basic functionality such as calling an operation,
creating an object, and returning a value.

The Call Operation Action: this action invokes an operation on an object or a
class (if the operation is static). As shown in Fig. 4(a), the target (an object or
class) and then the operation must be specified by the user in the upper compart-
ments (upper figure). If the operation returns a result a variable will be created
automatically. If the operation expects arguments parameter compartments will
be added. The lower part of Fig. 4(a) shows a call operation action that calls the

www.manaraa.com

244 A. Charfi, A. Schmidt, and A. Spriestersbach

(a) Notation (b) Abstract syntax

Fig. 4. Notation and abstract syntax for a CallOperationAction

operation calculateOrderTotalForCustomer from the running example. As this
operation returns a value a variable will be automatically created to which the
result is assigned. The name of this variable is set by the user. For each argument
of the operation there is an entry text field in the lowest compartment of the
notation where the argument has to be specified (in the example there is only
one parameter).
Figure 4(b) shows the abstract syntax corresponding to the visual representa-
tion of Figure 4(a). The chain of instances starting with result and ending with
variable assigns the returned result to the variable and is only present if the
operation referred from the CallOperationAction returns a result. For both ar-
guments of the CallOperationAction a ValuePin (target and argument) that hold
an expression is created.

(a) (b)

Fig. 5. Notation for CreateObjectAction and ReplyAction

The notation of Create Object Action (Fig. 5(a)) requires the user to specify
the class that will be instantiated and a variable that will created to hold the
new object. The notation of the Reply Action, which returns the result of an
operation, is shown in Fig. 5(b). Only the expression for the return value must
be specified.

4.3 Variable Actions

A variable can be declared using the variable element. Variables can be multi-
valued, i.e., contain more than one value and the values can be ordered and/or

www.manaraa.com

A Hybrid Graphical and Textual Notation and Editor for UML Actions 245

(a) (b)

Fig. 6. Notation for variable declaration and clearVariableAction

unique. Figure 6(a) shows the notation for a variable declaration. The notation
allows the users to set the variable name and its type and multiplicity.

The notation of Add Variable Value Action is shown in Fig. 7(a). This action
allows a value to be inserted into or assigned to a variable. The user has to specify
the variable name and a value expression. If the specified variable is multivalued,
the value will be added to the variable, otherwise the existing value will be
removed before adding the new value, which results in a simple assignment.
If the specified variable is ordered (and multivalued), an additional text field
appears in the notation where the user specifies the insert position.

(a) (b)

Fig. 7. Notation of AddVariableValueAction and RemoveVariableValueAction

The Remove Variable Value Action removes a value from a variable. It is the
counterpart to the AddVariableValueAction. As Fig. 7(b) shows, a variable must
be specified in the notation. If that variable is ordered and not unique, a position
expression must be specified, i.e., the index at which a value in the variable will
be removed (as indicated by the lower notation in the figure). In addition the
value to be removed must be specified.

4.4 Structural Feature Actions

These actions manipulate the values of structural features of an object, such as
class properties and association ends (which are also properties, but they are
not contained in classes). These actions are similar to variable actions.

The Add Structural Feature Value Action adds a value to a structural feature
of an object. Exactly like an add variable value action, this action inserts or
assigns a value to the structural feature. The notation for both usages is shown in
Figure 8(a): the upper notation is used for simple assignments and if no insertion
position must be specified, i.e., for multivalued but unordered structural features.
The lower notation is used when the insertion position must be specified, i.e., in
case of multivalued and ordered structural features.

www.manaraa.com

246 A. Charfi, A. Schmidt, and A. Spriestersbach

(a) (b) (c)

Fig. 8. Notation of structural feature actions

Fig. 8(b) shows the notation of the Clear Structural Feature Action, which
removes all values from a structural feature of an object. Only the object and
one of its features must be specified.

Fig. 8(c) shows the notation of Remove Structural Feature Value Action, which
is the counterpart to the AddStructuralFeatureValueAction. This action removes
a value from a structural feature. The object and one of its structural features
have to be specified in this notation. A position may have to be specified as in
the case of remove variable value action.

5 A Visual Editor for UML Actions

We implemented a visual editor for UML actions based on the notation presented
in Section 4. A screen shot of the editor showing the action model of the method
calculateOrderTotalForCustomer is presented in Fig. 9. A video showing the tool
can be found at [14].

After creating a UML class diagram of the application, the user can start our
editor from the UML tree editor of Topcased [8] by right-clicking the activity that
implements a certain method and start modeling the behavior of that method.
The user can create actions by selecting them in the palette and clicking on the
element in the editor area where the new actions should be inserted.

The editor provides a range of features that make it user-friendly and easy to
use. Thus, it enables users to focus more on their actual task, i.e., on behavior
modeling. The four most important features of the editor are:

– Automatic layout: The editor does the layout of actions automatically, taking
this burden away from the user. It is always clear how to read an action
model: from the top to the bottom.

– Auto-completion: The editor provides proposals when the user enters expres-
sions into a text field, e.g., the name of a variable. Only relevant proposals
are displayed based on the given context (e.g., the current scope of the edited
action) and the already entered text. This feature frees the user from having
to remember all available objects and from having to switch to other models
such as the structural model.

– Drag & drop: Following the direct manipulation interaction style, this fea-
ture allows moving actions between different SequenceNodes and reordering

www.manaraa.com

A Hybrid Graphical and Textual Notation and Editor for UML Actions 247

Fig. 9. The visual editor for UML actions

actions within a SequenceNode. The moving and reordering functionality is
essential for the creation of behavior models with the visual editor.

– Undo/redo: The editor provides the possibility to undo or redo changes to
the model. Knowing that the user can restore previous states of the “code”,
he is not afraid of making changes to the behavior and to experiment with
it. This is important since the editor should provide means to incrementally
develop the behavior instead of having to “put in the solution”.

The visual editor was implemented as an Eclipse plugin that is generated by
Eclipse Graphical Modeling Framework (GMF version 2.1.0) [15], which allows
fast creation of visual editors and works with the Ecore meta-models of Eclipse
Modeling Framework (EMF) [16]. An EMF-based implementation of UML 2.1
and OCL 2.0 is available from the Eclipse MDT project [7]. Further, basing the
editor on Eclipse and EMF allows its integration with the other Eclipse/EMF
based VIDE tools such as the textual editor of action models [6] and the code
generators [11,5] from UML actions to Java, ODRA, and ABAP. This integration
allows modeling behavior at the PIM level with the visual and textual editors
and then generating complete and compile-ready applications.

6 User Study

To see whether the proposed hybrid notation really brings the expected advan-
tages over a textual notation, the hybrid notation (and the editor) was compared

www.manaraa.com

248 A. Charfi, A. Schmidt, and A. Spriestersbach

with Smalltalk and Squeak as IDE in a user study. Smalltalk was chosen because
it supports object-oriented programming (just as the VIDE language) and be-
cause it has a very similar set of language features (at least for the tasks in
this study). Furthermore, it is relatively unproblematic to find participants who
do not know this language. The study was designed with the following research
questions in mind: How fast can the hybrid notation be learned? What mistakes
are prevented or facilitated by the visual notation? and in which situations is
the hybrid notation better than a pure textual notation.

Of particular interest was how fast the notation can be learned. Participants
were given simple tasks from the business applications domain and they were
observed while they were making their first steps with the new language, trying
to solve the tasks. As an indication of how fast each language was learned the
time taken to solve these tasks was measured. The underlying hypothesis was
that the participants will learn the hybrid notation faster and thus need less
time to solve the tasks compared to the textual notation.

6.1 Experimental Design

In total 16 participants took part in the study, ranging from less experienced
to advanced programmers. The participants were all familiar with UML as a
modelling language for static structures, but they did not know UML actions,
neither did they know Smalltalk. About 2/3 of the participants have never used
a visual programming language before.

A within-groups design was chosen, i.e., every participant solved the same
tasks using both languages. This way less participants are required (for statistical
relevance) and the variation of personal programming skills is less of a problem.
To account for the transfer of the solution into the other language, every second
participant started with Smalltalk. Additionally, the tasks were designed in such
a way that they were not challenging in an algorithmic sense.

Each session lasted ca. 60 to 90 minutes and there were three tasks in total.
A framework with all necessary classes and method stubs was provided in both,
Smalltalk and UML. It was an extended version of the scenario in the motivating
example (Figure 1). The first task required to implement the calculateOrder-
TotalForCustomer method from scratch. The other two tasks were smaller and
required to identify (and syntactically understand) certain constructs in the
given method bodies and to remove these or to add new elements to them. All
participants were given an unlimited amount of time to complete each task. The
time measurement was started as soon as the participant started working on the
task and stopped as soon as the participant was certain that the program was
done. There was only one condition for the returned solution: for Smalltalk, the
program had to compile and for VIDE, all fields of all actions had to be filled out
(text input is compiled immediately). As a consequence of this condition, there
were no syntax errors in the programs. To collect information about the kinds of
syntax errors the participants made, they were observed and video-tapped while
solving the tasks.

www.manaraa.com

A Hybrid Graphical and Textual Notation and Editor for UML Actions 249

6.2 Results and Discussion

As shown in Figure 10, all tasks were solved faster with the hybrid notation and
the respective editor. The statistical significance of this observation is supported
by a paired, two-tailed Student’s t-test: the null hypothesis (i.e., the performance
of both notations does not significantly differ) could be rejected at the 0.1%
level for task 1 and 2 and at the 1% level for task 3. Hence, the differences
can be classified as statistically very highly significant and highly significant,
respectively.

We observed a clear trend during the study, which is backed by the statistical
significance: participants had fewer difficulties with the proposed hybrid notation
than with the syntax of Smalltalk. In fact, the visual nature of the hybrid nota-
tion helped to reduce syntax hassle, resulting in significantly lower times needed
to generate the solutions. According to observations during the solutions, the
proposed notation mainly prevents several types of errors, such as wrong usage
of blocks (missing or superfluous brackets) and missing termination statements.
Another factor for the significantly lower times is presumably that actions are
represented by “templates” in the hybrid notation, making it easier to learn the
notation as the exact syntax for actions does not have to be remembered by the
sers. The saved solutions of the participants were also investigated with regard
to semantical correctness. The great majority of errors in the solutions were
glitches. Most participants made them consistently between the two languages.
Thus, no significant differences between the quality of the solutions generated
with the hybrid notation and Smalltalk were found.

All in all, the data presented here allows to draw the conclusion that the
hybrid notation was easier to learn for the participants than a new textual pro-
gramming language. Another evaluation comparing the hybrid notation and the
respective editor with the textual notation of UML actions and a respective ed-
itor [6] as well as a comparison with Java can be found in [10]. One possible
criticism to the presented evaluation may be that the chosen example is rather

Fig. 10. The mean times for each task and language

www.manaraa.com

250 A. Charfi, A. Schmidt, and A. Spriestersbach

small and our results may not scale to larger examples. However, a complex be-
haviour model can be always simplified by extracting some behavior into a new
method and just calling it from the original behavior model. Further, the hybrid
notation addresses the scalability challenges by allowing the graphical parts to
be collapsed to their textual representation which is usually more compact.

7 Related Work

Behavior modeling on the PIM level is not new, there have been a number of ap-
proaches before that address it. Often they are realized as proprietary extensions
of UML, such as Action Specification Language [17] (which is a textual language
for behavior modeling) and Executable UML [18] (which uses state machines for
behavior modeling). The problem is that these languages are not inter-operable,
i.e., cannot be interchanged between different tools and also do not integrate well
with structural models such as class diagrams. With UML 2 actions these prob-
lems are solved. However, a major limitation of the current UML standard is the
lack of concrete syntaxes for UML actions (see also section 3.2). Most existing ac-
tion languages for UML are textual and many of them are aligned to an existing
programming language such as Java and ABL [19].

Ambler [20] observes that developers prefer textual notations for modeling.
This is supported by Fowler [21] and several other practitioners that state that
the diagrammatic way of code construction is incomparably slower than textual
notations. On the other hand, Hailpern [22] states that UML has a potential
to cope with the challenges of software modeling as there is a growing tool
landscape and people trained to use them. This position is also taken by [23], who
states that the common UML repository supports users to use ”notations they
feel comfortable with and still interchange models with others who use different
presentations for the same concepts.”. As the hybrid notation proposed in this
paper combines the benefits of textual and visual notations and as it is based
on standard UML actions its chances for adoption are quite good. Further, the
provision of model compilers for code generation from UML actions [11,5] would
favour even more that adoption.

As examples of languages that define both graphical and textual notations
for action languages we mention Starr’s Concise Relational Action Language
(SCRALL) [24] and the Specification and Description Language (SDL) [25].

SDL was first developed using a Graphical Representation (SDL/GR) and
was then extended with a textual Phrase Representation (SDL/PR). Both rep-
resentations have the same underlying abstract syntax. While SDL preceded the
development of UML actions it was certainly not designed as a UML action
language. Recently, a mapping from SDL to UML actions was defined [25].

In contrast to SDL, Scrall [24] is fully compatible with UML 2.0 action se-
mantics. The language is a hybrid text-graphical action language with a primary
focus on the graphical language. However for simplicity the language supports
textual expressions in SMALL or OAL e.g., for comparison, selection, compu-
tation and navigation, etc. that are integrated directly into a Scrall diagram.

www.manaraa.com

A Hybrid Graphical and Textual Notation and Editor for UML Actions 251

The author promotes a pragmatic approach to ”Use text where compact linear
expressions are most descriptive. Use graphics where the focus should be on the
flow of data and control.” [24]. This combination of textual and graphical syntax
lowers diagram complexity and space used and therefore addresses the thread
of gargantuan models. This is also true for the hybrid approach we proposed
for the VIDE language. In contrast to VIDE, SCRALL discards procedural ar-
tifacts, discouraging sequencing, the use of temporary variables and iteration.
Instead, it focuses on explicit data and control flow to express parallelism more
naturally. Consequently, SCRALL’s graphical notation is a typical “boxes and
lines” diagram notation for which it is difficult to provide a reasonable auto-
matic layout – in contrast to our notation. It remains the burden of the user.
Furthermore, typical diagrammatic notations without any restrictions tend to
be more cluttered and less compact than text or our notation.

8 Conclusion

In this paper, we presented a hybrid notation and an editor for UML actions.
With these contributions we tackle three problems hindering the adoption of
UML actions for behavior modeling in practice namely the lack of a concrete
syntax, the complexity of the meta-model, and the insufficient tool support.
Our notation shields the user from several meta-model complexities and shows
directly all action properties and attributes that must be set. The editor pro-
vides several features that ease creating/manipulating action models such as
auto-layouting, auto-completion, and direct manipulation. The notation and the
editor were evaluated using a user study that confirmed that learning the hy-
brid notation and its tool is faster than learning a new textual programming
language. A comparison of the proposed notation with ”pure”visual notations,
e.g. those described in Section 7 remains to be done as future work.

Acknowledgements. This work is supported by the European Commission FP
6 Project VIDE - IST-033606-STP. We thank Andreas Roth for contributing to
an early version of the proposed notation.

References

1. OMG: MDA home page (2009), http://www.omg.org/mda
2. Gruhn, V., Pieper, D., Röttgers, C.: MDA – Effektives Software-Engineering mit

UML 2 und Eclipse. Springer, Berlin (2005)
3. OMG: Concrete syntax for a UML action language request for proposal (2008),

http://www.omg.org/docs/ad/08-09-09.pdf

4. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-Driven Development
Using UML 2. 0: Promises and Pitfalls. Computer 39, 59–66 (2006)

5. VIDE: Visualize All Model-Driven Developement: EU FP6 Project (2009),
http://www.vide-ist.eu

http://www.omg.org/mda
http://www.omg.org/docs/ad/08-09-09.pdf
http://www.vide-ist.eu

www.manaraa.com

252 A. Charfi, A. Schmidt, and A. Spriestersbach

6. Falda, G., Habela, P., Kaczmarski, K., Stencel, K., Subieta, K.: Platform-
independent Programming of Data-intensive Applications using UML. In: Meyer,
B., Nawrocki, J.R., Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp. 103–115.
Springer, Heidelberg (2008)

7. Eclipse: Eclipse model development tools (2008),
http://www.eclipse.org/modeling/mdt

8. Topcased (2008), http://www.topcased.org
9. No Magic: MagicDraw UML (2008), http://magicdraw.com

10. VIDE: Deliverable d.11.3: Workshop, competition, training course and verification
(2009), http://www.vide-ist.eu/deliverables.html

11. Charfi, A., Müller, H., Roth, A., Spriestersbach, A.: From UML Actions to Java.
In: Proc. of IDM 2009 (2009)

12. Falda, G., Habela, P., Kaczmarski, K., Stencel, K., Subieta, K.: Executable Plat-
form Independent Models for Data Intensive Applications. In: Bubak, M., van
Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS,
vol. 5103, pp. 301–310. Springer, Heidelberg (2008)

13. Schmidt, A.: A visual editor for behaviour modelling with UML actions. Master’s
thesis, Technische Universität Darmstadt (2009)

14. VIDE: Visual editor video (2009),
http://www.vide-ist.eu/reflib/elearning/vide/b/b0006.html

15. Eclipse: Eclipse Graphical Modeling Framework (2008),
http://www.eclipse.org/modeling/gmf

16. Eclipse: Eclipse Modeling Framework Project (2008),
http://www.eclipse.org/modeling/emf

17. Carter, K.: UML ASL Reference Guide, ASL Language Level 2.5, Manual Revision
D (2003), http://www.omg.org/docs/ad/03-03-12.pdf

18. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing, Amsterdam (2002)

19. Heitz, C., Thiemann, P., Wölfle, T.: Integration of an Action Language Via UML
Action Semantics. In: Draheim, D., Weber, G. (eds.) TEAA 2006. LNCS, vol. 4473,
pp. 172–186. Springer, Heidelberg (2007)

20. Ambler, S.W.: A Roadmap for Agile MDA (2007),
http://www.vide-ist.eu/deliverables.html

21. Fowler, M.: UML as Programming Language (2003),
http://www.martinfowler.com/bliki/UmlAsProgrammingLanguage.html

22. Hailpern, B., Tarr, P.: Model-driven Development: the Good, the Bad, and the
Ugly. IBM Syst. J. 45(3), 451–461 (2006)

23. Conrad, B.: UML without Pictures. IEEE Softw. 20(5), 33–35 (2003)
24. Starr, L.: SCRALL (Starr’s Concise Relational Action Language) (2003),

http://www.modelint.com/downloads/mint.scrall.tn.1.pdf

25. Bjorkander, M., Ober, I., Weigert, T.: SDL Mapping for the UML Action Semantics
(2000), http://www.omg.org/docs/ad/00-08-01.pdf

http://www.eclipse.org/modeling/mdt
http://www.topcased.org
http://magicdraw.com
http://www.vide-ist.eu/deliverables.html
http://www.vide-ist.eu/reflib/elearning/vide/b/b0006.html
http://www.eclipse.org/modeling/gmf
http://www.eclipse.org/modeling/emf
http://www.omg.org/docs/ad/03-03-12.pdf
http://www.vide-ist.eu/deliverables.html
http://www.martinfowler.com/bliki/UmlAsProgrammingLanguage.html
http://www.modelint.com/downloads/mint.scrall.tn.1.pdf
http://www.omg.org/docs/ad/00-08-01.pdf

www.manaraa.com

Mapping Requirement Models to Mathematical
Models in Control System Development

Dominik Schmitz1, Ming Zhang1, Thomas Rose1, Matthias Jarke1,
Andreas Polzer2, Jacob Palczynski2, Stefan Kowalewski2, and Michael Reke3

1 Fraunhofer FIT, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
{dominik.schmitz,ming.zhang,thomas.rose,matthias.jarke}@fit.fraunhofer.de
2 RWTH Aachen University, Informatik 11, Ahornstr. 55, 52056 Aachen, Germany

{polzer,palczynski,kowalewski}@embedded.rwth-aachen.de
3 VEMAC GmbH & Co. KG, Krantzstr. 7, 52070 Aachen, Germany

reke@vemac.de

Abstract. When developing control systems software, mathematically
based modelling tools such as Matlab/Simulink are used for design, sim-
ulation, and implementation. Thus, a continuous model-based approach
does not need to map requirements to, for example, UML class dia-
grams but to this mathematical representation. In this paper, we build
on previous work that has applied the requirements formalism i* to the
development of control systems software and present a mapping from i*
models to Matlab/Simulink models. During a first manual transforma-
tion step, design alternatives are resolved. The second, automated step
generates a Matlab/Simulink skeleton model from the i* model. Finally,
an interactive step allows incorporating existing hardware and platform
components into the skeleton. As a running example, we consider the
development of a parking assistant.

1 Introduction

The development of software for embedded devices is a challenge nowadays,
especially within a car [3]. Nonetheless in regard to control functionality, model-
based approaches are already quite common. But unlike usual software models,
control system engineers put mathematical models of the controlled system and
the controller at the centre of the modelling. Furthermore, models are used only
during the later development phases. At the requirements level, simple text-
based documents are still predominating [5].

The BMBF funded project ZAMOMO aims at a better integration of model-
based software and model-based control engineering. As a result of this effort,
we successfully applied the agent- and goal-oriented requirements engineering
modelling framework i* [12] to this field [10]. This enables for the first time an
integrated and continuous, model-based approach. Besides various advantages on
requirements level (see [11] for an elaboration), another key argument should be
an easier step from the requirements phase to later development phases. To close
this remaining open issue, we present within this paper how to derive an initial

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 253–264, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

254 D. Schmitz et al.

mathematical model in the format of the most commonly used Matlab/Simulink
environment (see http://www.mathworks.com) from an i* model. We provide
suitable tool support and present our approach with a real world example con-
cerning the development of a parking assistant for a small test vehicle at one
partner’s site.

The paper is organized as follows. Section 2 gives a brief introduction to con-
trol systems development. Afterwards Sect. 3 introduces our i* based approach
towards requirements modelling for control systems. Section 4 then presents the
conceptual mapping from i* to Matlab/Simulink, whereas the details of the im-
plementation are given in Sect. 5. A discussion of related work (Sect. 6) as well
as a summary and an outlook (Sect. 7) conclude the paper.

2 Control Systems Development

The task of a controller is to continuously compare and adapt the current
value(s) of some system to some possibly changing desired value(s) [8]. For ex-
ample, the driver of a car specifies a desired velocity implicitly and indirectly via
the position of the accelerator. But only the engine controller within the elec-
tronic control unit computes the appropriate amount of fuel as well as the best
point in time for injection and ignition. Control system functionality is nowadays
implemented in software on electronic control units (ECUs) [3]. This is also the
prerequisite for higher level support in form of driver assistance systems such as
adaptive cruise control or the electronic stability program.

In industrial practice, a controller is developed in five steps [8]. Control en-
gineers have to understand the controlled system, for example, an engine for
which a controller is to be developed. Thus, the first step in the engineering pro-
cess is to build up a block diagram, a simple graph-based representation of the
interactions between the main components that captures the behaviour of the
controlled system. This model helps identifying actuating and controlled process
variables, i. e. the controlled system’s properties in the second step. In the third
phase, the controller’s functionality is designed. The fourth step concerns simu-
lating the whole control cycle in crucial situations. If it behaves as expected and
demanded, the controller is finally implemented and put into operation in the
last step. The process is usually supported by rapid control prototyping environ-
ments (RCP) [1]. Such a tool chain supports the engineer who can model and
simulate the whole control cycle and validate the controller design at early devel-
opment stages. The Matlab/Simulink environment by The Mathworks is most
commonly used in this context. Simulink is a graphical programming language
on top of the numerical math engine Matlab. It allows for the signal oriented
(thus, block diagram based) visual capturing of complex systems and provides
a large set of libraries with pre-defined mathematical blocks. The user either se-
lects blocks from these libraries or provides his own implementation, customizes
the blocks via parameters, and connects them by signals via their input and out-
put ports. The internal representation of each block and hence the whole model
as differential equations eventually enables simulations. We will see an example
of such a mathematical model later on (see Sect. 4.2).

www.manaraa.com

Mapping Requirement Models to Mathematical Models 255

3 Requirements Engineering for Control Systems with i*

i* [12] is an agent- and goal-oriented, semi-formal modelling framework targeting
the requirements engineering domain. In [10], the authors successfully explored
the possibility to capture control system requirements with i*. We will briefly
reconsider this approach here and thereby give a short introduction to the i*
framework.

Strategic Dependency (SD) Diagram. In i*, two levels of modelling are
distinguished. On the higher level, the modeller can capture the various stake-
holders (agents) and their dependencies within the so called strategic dependency
(SD) diagram. Within controller development, the “controlled system” as well as
the “controller” are the two main stakeholders. Furthermore, their combination,
the “control cycle” needs to be considered a stakeholder of its own since some
properties, e. g. stability, can only be assigned to this combination. In Fig. 1
the requirements regarding a parking assistant are captured. Besides the “park-
ing assistant”, the “car” as well as the “environment” are considered important
stakeholders. The “parking assistant” is part of the “controller” whereas the
other two stakeholders are part of the “controlled system”. We have kept the
model simple, but other stakeholders such as the driver could be added in a
similar fashion.

Fig. 1. Combined SD and SR Diagram for a Parking Assistant

Dependencies are used to capture the relationships between the modelled
stakeholders. In a task dependency the depender specifies the details of the re-
quested service while in a goal dependency it is left to the dependee how to
provide a requested state. Similarly, with a resource dependency the dependee
only has to provide the resource. A softgoal dependency is similar to a goal de-
pendency but there are no clear-cut criteria when this goal is fulfilled. Instead a
dependee can only make contributions. Thus, softgoals are suited to capture non-
functional requirements (quality goals). In control systems engineering, all these

www.manaraa.com

256 D. Schmitz et al.

types of dependencies apply as well. Especially, actuators and sensors are sim-
ply captured by corresponding resource dependencies. Figure 1 shows that the
parking assistant depends on the environment for “distance” information and on
the car for “velocity”. In turn, the car receives input from the parking assistant
in regard to “steering” and potentially also “acceleration” and “brakes”.

Strategic Rationale (SR) Diagram. The individual goals and processes of
stakeholders and systems as well as their relation to external dependencies are
captured in the more detailed strategic rationale (SR) diagrams. Regarding the
modelling, the types of links (task, goal, resource, and softgoal dependencies) sim-
ply become modelling elements on this level. Additionally, the SR diagram pro-
vides new types of links to detail out a complex task (decomposition), to model
alternatives to achieve goals (means-ends), or to specify qualitative contributions
towards softgoals (help, make, break, etc. contribution). Figure 1 also shows SR
details of some stakeholders involved. For example, the main task “park car” can
be subdivided into three tasks “finding a fitting parking place”, “computing the
parking route”, and eventually the actual “parking”. The latter is modelled as a
goal to consider two alternatives: a “fully automatic” approach (that thus also
controls acceleration and brakes) or a “semi automatic” approach that only af-
fects the “steering” while the driver has to accelerate. Overall, parking assistants
are intended to support the softgoal “well utilize available parking places” in that
most people wrongly decide that they do not fit into a parking place.

In contrast to a simple block diagram [8], the i* model as introduced above
is thus able to capture not only the functional interdependencies of controller
and controlled system but also of software and non-functional issues as well as
various additional stakeholders within a combined view. Thereby, i* allows to
explore reusability and scalability of controllers in different contexts systemat-
ically. Further enhancements have been introduced by accommodating the fact
that control systems engineers are usually experts in some particular sub do-
main, such as, for example, engine controllers. We expect this knowledge to be
captured in form of a domain model to support the creation of requirements
models [11].

4 Mapping i* to Matlab/Simulink

We have divided the transformation from i* to mathematical models, more pre-
cisely Matlab/Simulink models, into three steps. The first step requires manual
intervention by a human developer to resolve all ambiguities (i. e. goal alterna-
tives) in the requirements model by taking design decisions. Secondly, the core
mapping takes place by automatically generating a Matlab/Simulink structure
for the remaining solution. The third step is particular to the domain of con-
trol systems development. The developer is supported by taking the intended
hardware and platform details much earlier into account as in normal software
development, i. e. already when designing and not only when implementing. In
the following we elaborate each step, whereas implementation details are given
in Sect. 5.

www.manaraa.com

Mapping Requirement Models to Mathematical Models 257

4.1 Step 1: Resolving Ambiguities

The intention of an i* requirements model is to capture the problem charac-
teristics and investigate various kinds of solutions. Consequently, the model is
necessarily ambiguous. For example, in our running example (see Fig. 1) for
“parking” both alternatives, a “fully automated” as well as a “semi-automated
parking assistant” are considered. Before proceeding with the further develop-
ment, the developer has to take his design decisions, i. e. he has to decide for
each goal which alternative to select. Of course, the modelled softgoals and cor-
responding contribution links help during this decision process as well as existing
tool support such as label propagation or others (see [6]). But nonetheless in the
end it is a decision of the developer and that is why we consider it a manual
transformation step. We expect the developer to document his decisions in the
model by according markings. Regarding our example, there is only one goal
“park” (inside the “parking assistant”). Assuming the choice (and hence mark-
ing) of a “fully automated parking assistant”, we can easily derive a model that
contains only the relevant alternatives, i. e. the task “semi automatic” is simply
discarded based on the marking. The resulting model serves as the starting point
for the next development step.

4.2 Step 2: Core Mapping

Table 1 shows how the concepts of i* are mapped to the concepts of Mat-
lab/Simulink. Mostly, a block, in Matlab called a subsystem, is the target for
model transformation. This is especially true for all agent and task elements,
whereas softgoal elements and dependencies are mapped to textual hints to re-
mind the developer during further development of important non-functional as-
pects. Goals have more varying transformation targets. As dependencies they

Table 1. Mapping i* Concepts to Matlab/Simulink Concepts

i* Model Matlab/Simulink model

stakeholders agent subsystem
dependencies task dependency subsystem in dependee, signals

goal dependency text
softgoal dependency text
resource dependency
- sensor or actuator subsystem and signals
- normal signal only

rationale task subsystem
elements goal – no refinement model verification

– refined subsystem
softgoal text
resource constant

links decomposition, means-ends, is-part-of nesting of subsystems
contribution – (omit)

www.manaraa.com

258 D. Schmitz et al.

Fig. 2. “Control Cycle” Subsystem of Resulting Matlab/Simulink Model

are also mapped to text. As elements of an SR diagram they are mapped to a
subsystem if they are refined, i. e. an incoming means-ends link exists. If they
are not refined, they are assumed to describe hard goals that need to be achieved
and therefore are mapped to the model verification element. Resource dependen-
cies are very important since they are used in our approach to represent sensors
and actuators. In this special usage, they are also transformed in a special way
since then an additional subsystem is generated representing the sensor/actuator
in Matlab/Simulink. Otherwise only a signal connection is created from the de-
pendency.1 On SR level, resources are mapped to blocks representing constants,
since this is their most likely application. Decomposition, means-ends, and is-
part-of links are mapped to parent-child relationships of subsystems, i. e. their
nesting. And finally, contribution links can be omitted since the design decisions
have already been taken.

Figure 2 shows the content of the “control cycle” subsystem as a result of
the mapping. Next to the subsystems for “controlled system” and “controller”,
you also see the subsystems that result from sensor and actuator relationships
(e. g. “distance”, “steering”, etc.) whereas the subactors “parking assistant”,
“environment”, and “car” as well as any SR detail from Fig. 1 are not visible in
this view since they are internal parts of subsystems.

1 Notice: Due to its semantics, the directions of the dependency and of the resulting
signal are opposed. If the controller depends on a sensor for some information, then
we expect an incoming link to the controller on Matlab/Simulink level.

www.manaraa.com

Mapping Requirement Models to Mathematical Models 259

4.3 Step 3: Respecting Hardware and Platform Issues

The mapping described above quite generically maps all functional aspects to
subsystems. But the chief attraction of using Matlab/Simulink is the vast set
of pre-defined blocks that perform some particular computation, for example, a
pre-defined, so called PID controller with proportional, integrative, and differ-
encing components that only need to be parameterized. Thus, the developer will
replace or detail out the generic subsystems during the further development by
more specific Matlab/Simulink components. Accordingly, the generated model is
only a first initial model providing a suitable structuring. Since in control system
development specifics of the underlying hardware and platform need to be con-
sidered much earlier than in usual software development, pieces of information
in this regard are possibly already part of the requirements model. Thus, this
specific knowledge should also be considered during the transformation.

In the following, we will focus the specifics of the VeRa rapid control prototyp-
ing platform that has been developed by one of the project partners to provide
an open but nonetheless close-to-production control system development envi-
ronment (see Fig. 3 (a)). The VeRa system comes equipped with a tool chain
that provides specific modelling elements to the mathematical modelling envi-
ronment via a library, allows to use the Realtime Workshop (provided by The
Mathworks) to generate code for the VeRa platform, and finally provides means
to bring the generated code on the real hardware (flash).

Figure 3 (b) shows the content of a VeRa library related to the domain of
driver assistance systems. It provides sensors/actuators helpful for realizing, for
example, a parking assistant, adaptive cruise control, or the electronic stability
program (ESP). As an example, regarding “distance” an ultrasonic or an infrared
sensor are available. We have extended this library by meta tags that categorize
each element into the basic categories “sensor”, “actuator”, “controller”, and
“controlled system”. The modeller can specify which library(ies) to consider
during transformation. By interpreting the meta information, we can easily offer
potential matches for the mapping of elements. Currently, only the categories are
matched, thus for each sensor in our requirements model the developer is offered
all sensors from the libraries. In the future, we expect that correspondences
between the domain model (see [11]) that is used to build up the requirements
model and the assisting VeRa library will exist that can be exploited. Altogether,
a much more tailored and specific model results from the model transformation.

(a) (b)

Fig. 3. (a) VeRa RCP System (b) Driver Assistance Domain-Specific Matlab-Library

www.manaraa.com

260 D. Schmitz et al.

5 Implementation

Most importantly, the knowledge representation language Telos [9], that is un-
derlying the i* formalism, and its implementation ConceptBase [7] are used
for realizing the core transformation step. Eventually, SimEx, a specific tool to
interact with Matlab/Simulink kindly provided by IT Power Consultants (see
http://www.itpower.de), finalizes the transformation procedure. Due to reasons
of space, we focus the first two transformation steps here.

5.1 Telos and ConceptBase

The knowledge representation language Telos [9] has been introduced to cap-
ture knowledge about information systems and to support their development.
Originating from former requirements modelling languages, the focus for the de-
velopment was on achieving a high-level of adaptability. Thus, meta-modelling
means are at the core. To achieve this, Telos offers a simple generic data model
consisting of nodes (objects), links (attributes, relationships), and logical as-
sertions that is extensible to specific application needs. The user can employ
assertions as deductive rules to derive additional information automatically, or
as integrity constraints to control the entry of information by users. Finally,
we need at least one abstraction mechanism – classification – which enables us
to talk about classes and their instances. A complete definition can be found
in [7].

ConceptBase is a deductive object base management system for meta data-
bases implementing the Telos data model (for detailed information please visit
http://www-i5.informatik.rwth-aachen.de/CBdoc/). The system has been used
in various projects ranging from development support for data-intensive appli-
cations, requirements engineering to co-authoring of technical documents. Con-
ceptBase’s implementation of O-Telos provides a couple of features beyond the
core Telos. For one, there is a powerful query language. For another, mod-
ules have been introduced to structure the name space. Finally, ConceptBase
supports a limited version of active rules to react to internal and external
events.

5.2 Queries Support Step 1: Resolving Ambiguities

With the help of Telos we can easily provide checks on the readiness of a model
for transformation by using the query class concept. A query is represented as
a class where the instances form the answers to the query. The query itself is
stated in form of a constraint of the class such that all objects of the object
base fulfilling this constraint become (virtual) instances. Validation rules can be
formulated by queries that explicitly search for violations. For example, Figure 4
shows a query that checks whether each goal has at most one (chosen) alternative
by simply asking for a goal that has more than one. If the result is empty, the
model is ready for transformation in this regard. Consequently, a set of such
queries can be used to fully check the model.

www.manaraa.com

Mapping Requirement Models to Mathematical Models 261

QueryClass checkGoals isA IStarGoalElement with

retrieved_attribute name : String

constraint rule : $exists ml1,ml2/IStarMeansEndsLink

(ml1 <> ml2) and (ml1 to this) and (ml2 to this)$

end

Fig. 4. Query that Checks for Single Alternative at Goals

5.3 Metamodelling, Queries, and Answer Formats Support Step 2

It has turned out that the transformation is simplified when we define an interme-
diate Matlab/Simulink-like meta model in Telos. Since this is exactly the intended
purpose behind Telos, the definition is straight forward. The available
elements are mainly blocks but specialized into subsystems, ports (in and out),
and some more. Regarding links, a single type line is sufficient. An attribute to
subsystems finally captures the typical nesting of subsystems in Matlab/Simulink
models. The complete meta model is given in [13]. The introduction of the
Matlab/Simulink-like meta model allows for a refinement of the core trans-
formation step (Step 2). The i* model is first transformed into the new, also
Telos-based modelling language (stored again in ConceptBase but in a sepa-
rate module containing the Matlab/Simulink meta model instead of the i* meta
model). From here, we export the models content to an XML file that can be
read by the SimEx tool to finally generate the information in the original Mat-
lab/Simulink file format (.mdl).

Both sub transformation steps are realized by a set of queries in combination
with suitable answer formats (see below). The queries for the first transforma-
tion result straight away from the mapping in Table 1 and are applied in a
suitable order to the requirements model. We start with the agent element, then
resources, tasks etc. In some cases special measures have to be taken. For ex-
ample, we use the active rule feature to create a suitable ascending numbering
of ports within a subsystem. Deductive rules are helpful to simplify queries by
hiding complexity. As obvious from the transformation (see Table 1) the nesting
of subsystems on Matlab/Simulink side results from various kinds of modelling
(is-part-of, decomposition, parent-child relationship) in i*. A derived attribute
parent subsystem eases access to the particular parent subsystem. Similarly, we
have introduced deductive rules to automatically derive whether a resource de-
pendency is a sensor, an actuator, or none of this. Due to reasons of space, we
have to omit these technical details. For more information, see [13].

User-defined answer formats allow us to access the result of a query and
reformat it to our needs. While the original intent is only the second kind of ap-
plication step (e. g. generating an XML representation of the Matlab/Simulink
like model), we also use this feature for the first transformation, i. e. to derive
the Telos frames for the Matlab/Simulink like language. Figure 5 shows as an
example the two representations of the actuator “steering”. In i* (left side), this
is captured by a resource element (i*Elem 20) and according links (i*Link 19,
i*Link 20). In Matlab/Simulink (right side), we get a subsystem (MSElem 20)
with children that represent ports (MSElem 2041, MSElem 204, ...). Furthermore,

www.manaraa.com

262 D. Schmitz et al.

the element is registered as a child of the “control cycle” (MSElem 56). Finally,
several lines between the ports that are generated on various subsystem levels
are created (MSLine 246, ...). Notice that varying numbers of frames are gen-
erated reflecting the different ways the two meta models represent information.
In much the same way, the newly created Telos model in the Matlab/Simulink
style can again be queried with user-defined answer formats to derive an XML
representation that is readable by the SimEx tool.

i* Matlab/Simulink

Token i*Elem_20

in IStarResourceElement with

name

Label0 : "actuator: steering"

links

Label1 : i*Link_19;

Label2 : i*Link_20

end

Token i*Link_19

in IStarDependencyLink with

from from : i*Elem_4 % "car"

to to : i*Elem_20

end

Token i*Link_20

in IStarDependencyLink with

from from : i*Elem_20

to to : i*Elem_9 % "park"

end

Token MSElem_20 in Subsystem with

name

Label0 : "actuator: steering"

children

Label1 : MSElem_2041;

... % omissions, e.g. port counters

end

Token MSElem_56 with % "control cycle"

children Label20 : MSElem_20

end

Token MSElem_2041 in Outport with

parent Label0: MSElem_20

end

Token MSElem_204 in Inport with

parent Label0 : MSElem_4 % "car"

end

Token MSLine_246 in Line with

from Label0 : MSElem_2041

to Label1 : MSElem_204

end

... % various details omitted

Fig. 5. Original i* Frame of a Resource Dependency vs. Simulink Like Representation

6 Related Work
Model transformation is an important part of MDA, the Model Driven Architec-
ture promoted by the OMG (http://www.omg.org/mda). In their nomenclature,
we have presented here a model-to-model transformation. The design decisions
can be considered as “additional information” respected during the transforma-
tion step. Furthermore, taking hardware specifics into account as we have pre-
sented here, results in a so called “platform-specific model”. But we have not ap-
plied any of the existing model transformation approaches, such as, for example,
the ATLAS transformation language (see http://www.eclipse.org/m2m/atl/).
This is mainly due to the fact that these approaches favour the use of UML,

www.manaraa.com

Mapping Requirement Models to Mathematical Models 263

MOF, or EMF, respectively, as the basic modelling language. Thus, this would
have resulted into doubling conversion efforts. Furthermore, we took advantage
of ConceptBase’s powerful features such as queries, deductive and active rules
relying on a well founded knowledge representation approach. Thus, the main
“intelligence” of our transformation is captured in the powerful rules and queries.

We also tried to use the XML representation of i*, called iStarML [4], in com-
bination with XSLT. But as others have already indicated [2], for complex models
and relationships as they occur in our models, XML-based approaches are not
suitable. And finally, the TAOM4E tool environment (http://sra.itc.it/tools/
taom4e/) supports a fully model-driven approach towards software development
based on i*. But since we address control systems development, a mapping to-
wards mathematical modelling languages is missing there.

7 Conclusions

Within this work, we have presented a model transformation that addresses
the peculiarities of control systems development. It allows to map requirements
captured in an i* model to an initial mathematical model that is commonly
used in control systems development (Matlab/Simulink). The transformation
includes manual (taking design decisions) as well as automatic (core mapping)
and semi-automatic (refine mapping towards hardware/platform) steps. At the
core, we use the knowledge representation language Telos and its implementation
ConceptBase to perform the essential transformation step.

Two case studies were investigated during the development of this approach,
the parking assistant that has been presented here and an engine controller that
is much more complex. Discussions with the project partners have already shown
some advantages of our approach. As with any continuous model-based approach,
the key advantage is consistency. For example, the Matlab/Simulink models that
we derived from our requirements models sometimes deviated in details from
the original Matlab/Simulink models that have been developed by our partners.
In some cases, they simply did not treat all sensors or actuators in the same
way. Our approach allows avoiding such pitfalls thereby easing maintenance in
the long run. Furthermore, due to the automatic generation of models, a better
structuring was enforced. By reflecting the fine-grained decompositions in i* this
prepares for future changes by a better modularization of the Matlab/Simulink
model. On the other hand, the current implementation must still be considered a
prototype. Overall transformation time is in the range of minutes (depending on
the computer’s power and main memory). This needs to be improved for every
day real-life application.

Thus, regarding future work several improvements can be made. For one,
we can improve the hardware/platform specific mapping by including a bet-
ter similarity search (text and/or structure based) and also the domain model
information on requirements level (see [11]). Furthermore, an abstraction layer
has been developed in the project that aims at reducing the hardware depen-
dency of the Matlab/Simulink model. We then only need to map to a “distance”
sensor block, while the choice between ultrasonic and infrared is expected in

www.manaraa.com

264 D. Schmitz et al.

an XML-based configuration layer that hides the hardware-specific characteris-
tics. And finally, our approach to model transformation via ConceptBase and its
user-defined answer formats needs a closer investigation. Although it has mainly
been driven here by pragmatic issues (neither model was given in EMF), the
approach founded on a knowledge representation language seems to work well
and potentially could be of advantage also in other fields, especially, since the
core “intelligence” of the mapping is defined declaratively as rules and queries.

Acknowledgment. This work was supported by the BMBF in the project
ZAMOMO (01 IS E04).

References

1. Abel, D., Bollig, A.: Rapid Control Prototyping. Springer, Heidelberg (2006)
2. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphi-

cal definition of in-place transformations in the Eclipse Modeling Framework. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 425–439. Springer, Heidelberg (2006)

3. Broy, M.: Challenges in automotive software engineering. In: Int. Conf. on Software
Engineering, Shanghai, China, pp. 33–42. ACM, New York (2006)

4. Cares, C., Franch, X., Perini, A., Susi, A.: iStarML: An XML-based model inter-
change format for i*. In: Proc. of the 3rd Int. i* Workshop, Recife, Brazil, February
11-12. CEUR Workshop Proceedings, vol. 322, pp. 13–16 (2008)

5. Graaf, B., Lormans, M., Toetenel, H.: Embedded software engineering: The state
of the practice. IEEE Software 20(6), 61–69 (2003)

6. Horkoff, J., Yu, E.S.K.: Qualitative, interactive, backward analysis of i* models. In:
Proc. of the 3rd Int. i* Workshop, Recife, Brazil, February 11-12. CEUR Workshop
Proceedings, vol. 322, pp. 43–46 (2008), CEUR-WS.org

7. Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M.: ConceptBase - a deduc-
tive object base for meta data management. Journal of Intelligent Information
Systems 4(2), 167–192 (1995)

8. Lunze, J.: Automatisierungstechnik. Oldenbourg (2003)
9. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos - representing knowl-

edge about information systems. ACM Trans. on Information Systems 8(4), 325–362
(1990)

10. Schmitz, D., Drews, P., Hesseler, F., Jarke, M., Kowalewski, S., Palczynski, J.,
Polzer, A., Reke, M., Rose, T.: Modellbasierte Anforderungserfassung für soft-
warebasierte Regelungen. In: Software Engineering, LNI, Munich, Germany (2008)

11. Schmitz, D., Nissen, H.W., Jarke, M., Rose, T., Drews, P., Hesseler, F.J., Reke, M.:
Requirements engineering for control systems development in small and medium-
sized enterprises. In: 16th Int. Requirements Engineering Conf., Barcelona, Spain.
IEEE, Los Alamitos (2008)

12. Yu, E.: Modelling Strategic Relationships for Process Reengineering. Ph.D thesis,
University of Toronto (1995)

13. Zhang, M.: Conception and implementation of the transformation of i* require-
ments models to mathematical design models in Matlab (in German). Master’s
thesis, RWTH Aachen University (to appear)

www.manaraa.com

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 265–276, 2009.
© Springer-Verlag Berlin Heidelberg 2009

On Study Results: Round Trip Engineering of Space
Systems

Andrey Sadovykh1, Lionel Vigier1, Eduardo Gomez2, Andreas Hoffmann3,
Juergen Grossmann3, and Oleg Estekhin4

1 SOFTEAM, Paris, France
{andrey.sadovykh,lionel.vigier}@softeam.fr

2 ESA ESOC, Darmstadt, Germany
Eduardo.gomez@esa.int

3 Fraunhofer FOKUS, Berlin, Germany
{juergen.grossmann,andreas.hoffmann}@fokus.fraunhofer.de

4 GTI6, Massy, France
oleg.estekhin@gti6.com

Abstract. Software developed for the space domain often has to deal with ex-
tremely long mission times (sometimes in the order of 15 to 20 years). During
the lifetime of a mission programming platforms evolve and sometimes disap-
pear forcing migrations or updates. Migration can also be triggered by the ap-
pearance of new platforms that can improve scalability, performance. European
Space Agency (ESA) is interested in modernization approaches that simplify
platform migration and that preserve the business values of systems. The Archi-
tecture Driven Modernization (ADM) promoted by the Object Management
Group (OMG) proposes to recover the models which represent the business
value and proceed with the platform migration in a forward MDA process. This
article provides results of a study dedicated to assess the state-of-the-art tools
and methods for model driven platform migration, including model-based test-
ing and metrication.

Keywords: MDA, ADM, M2M, round trip engineering, PSM2PIM, U2TP,
TTCN-3, model mining, model-based testing, model metrication.

1 Introduction

Some year ago, the Object Management Group (OMG) introduced the Model-Driven
Architecture (MDA) initiative as an approach to system-specification and interopera-
bility based on the use of formal models. In MDA, platform-independent models
(PIMs) are initially expressed in a platform-agnostic modelling language, such as
UML. The PIM is subsequently translated to a platform-specific model (PSM) by
mapping the PIM to the target platform (e.g. CORBA and Java) using formal rules.
Then, the code is generated from that PSM.

At the core of the MDA concept are a number of important OMG standards: The
Unified Modelling Language (UML), Meta Object Facility (MOF), XML Metadata
Interchange (XMI), and the Common Warehouse Metamodel (CWM). These standards

www.manaraa.com

266 A. Sadovykh et al.

define the core infrastructure of the MDA, and have greatly contributed to the current
state-of-the-art of systems modelling.

As an OMG process, the MDA represents a major evolutionary step in the interop-
erability standards. For a very long time, interoperability was based largely on
CORBA standards and services. Heterogeneous software systems interoperate at the
level of standard component interfaces. The MDA process, on the other hand, places
formal system models at the core of the interoperability problem. The most significant
benefit about this approach is independence of the system specification from the un-
derlying implementation technology or platform. The system definition exists inde-
pendently of any implementation model and has formal mappings to many possible
platform infrastructures (e.g., Java, C++, CORBA, Web Services).

Technical and economical advantages being promised by MDA are of a special
concern for the space domain where mission life-cycle of large system often reaches
15-20 years (e.g., ISS, ATV, Columbus and many other programmes). Typically,
COTS hardware and software platforms evolve tremendously throughout this lifecy-
cle. Therefore, implementing effective and efficient modifications of legacy applica-
tion software and porting it to new platforms would deliver significant benefits to
space programmes in terms of cost reduction, increase of performance and flexibility.

The round trip engineering is usually referred to as a process of model generation
from source code (reverse engineering) followed by generation of source code from
models. In this way, existing source code is converted into a model, subjected to
software engineering methods and then converted back into code. Usually, this proc-
ess is fulfilled on a platform specific level, while in the current project the round trip
engineering was considered on a larger scale: a model is abstracted to a platform
independent level and then a new platform specific model is derived. The goal of this
larger process is to extract a PIM containing the most persistent part of the legacy
system and then to proceed to the deployment to a new platform through all the MDA
phases. A special emphasis is put to the need of model-based verification and valida-
tion using generated tests.

The major goal of the study was (1) to develop a formal methodology for the
above-mentioned process, (2) to survey the current state of the art in applicable of-
the-shelf technologies and tools and (3) to demonstrate a feasibility of the approach.

2 Case Study

In order to demonstrate the applicability of the previously-mentioned methodology to
ground systems, ESA provided an application or a “target system”, which is represen-
tative and simple enough to be able to concentrate on the methodology. This target
system is a distributed file archive (FARC) enabled with a version control system.

After measuring using quality and maintainability metrics developed for this pur-
pose, the platform independent model (PIM) had to be extracted, allowing capitalising
of the existing know-how. In addition, PIM on conceptual level had to be used for
architecture re-structuring. Then, the code had to be generated for Java platform in
forward MDA process. All over the development process an early validation was
required to ensure the model consistency, while on the last stage the newly re-factored
system had to be validated using generated tests. Finally, the metrics analysis process

www.manaraa.com

 On Study Results: Round Trip Engineering of Space Systems 267

had to be repeated, in order to evaluate quality and maintainability metrics before and
after modernisation process.

The following important concerns were identified for the case study. A list of
COTS frequently used within the MDA / ADM engineering and relevant for space
systems had to be identified and assessed. For some phases where there was a lack of
tool support (PIM extraction, dedicated transformations), special actions were taken
to review on-going research activities, prototype and evaluate them.

Furthermore, specific emphasis was put on early, model-based verification and
validation. In particular, the expertise in TTCN-3 and U2TP was largely required.

The methodology and demonstrator tools chain ha d to rely as far as possible on
standards (OMG’s UML2, MOF, U2TP, XMI, KDM, and SPEM) and mature prod-
ucts to avoid proprietary solutions and ensure the capability to evolve with time.

3 Methodology

According to guidelines described above, an MDA / ADM process for the given case
study was developed (c.f. Figure 1).

Fig. 1. RTE Space Methodology Concept – Flow Chart

Initial source code is subjected to a metrics based analysis in order to calculate re-
usability and maintainability metrics and to define goals for further refactoring. Then
the code is reversed and a Platform Specific Model (PSM) is derived. This PSM is
also subjected to the metrics based analysis.

The PSM is subjected to an abstraction transformation that aims at eliminating
platform dependencies and extracting core business logic. Thus, a Platform Independ-
ent Model (PIM) is derived.

Taking into account the refactoring objectives resulted from the analysis process,
the PIM is restructured in order to fulfil those goals. From this point, the verification

www.manaraa.com

268 A. Sadovykh et al.

and validation process is started. The resulting PIM is used for the creation of a Plat-
form Independent Test Model (PIT) which is subsequently mapped to a Platform-
Specific Test Model (PST) as starting point for test code generation.

After the verification, a new PSM was generated for a Java platform. This PSM is
subjected to a new round of verification. In addition the PSM is used to generate tests
for further validation – Platform Specific Test Model (PST) is created. From this
point, the analysis metrics is recalculated for early evaluation of the successfulness of
the re-factoring.

In the next step, the code for a given platform is generated. It is validated using the
generated tests. Finally, the code is again analysed, in order to determine the added
value of the whole process.

In this way, the methodology covers all the abstraction levels: Code, Platform Spe-
cific and Platform Independent levels.

With regards to this methodology the project followed the phases listed below:

• PSM and PIM Extraction;
• PSM Derivation for the new target platform;
• Code Generation for the new target platform;
• Test Generation and Execution.

The metrics analysis mentioned before was fulfilled during the PIM Extraction and
after the Code Generation.

4 Tools

According to the requirements and methodology definition the candidate tools were
analysed and justification of the choice was provided. For the PIM Extraction and
PSM Derivation the UML2 CASE Tool had to be chosen. The criteria for tools as-
sessment provided below, we believe, may be characteristic for the platform migra-
tion problems.

First of all the UML2 Tool had to support both original and target platforms and in
some cases even simultaneously. In our case the round-trip reverse/generation feature
was necessary for C++ and Java. Due to the lack of the solutions for PIM Extraction,
the tool had to support UML2 Profile development, transformations and user interface
customisation. In addition, for the Code Generation/Migration phase, we needed an
integrated configuration system for model and code management in a multi-user envi-
ronment. Finally, EMF UML2 XMI export support was required for integration with
testing workbench.

According to these parameters the choice of Objecteering UML2 CASE Tool1 was
justified. This tool was used for PIM Extraction, PSM Derivation and Code Genera-
tion. Specific functionalities were developed to help in this study: PIM extraction
transformation, Find&Replace for Platform Replacement, Documentation generation
and etc. These methods are described in the following section. In addition, the re-
quirements for the FARC system were integrated with the model including traceabil-
ity establishing and documentation generation.

1 http://www.objecteering.com/

www.manaraa.com

 On Study Results: Round Trip Engineering of Space Systems 269

For the model-based testing the analysis identified the need for support of TTCN-3
and UML2 Test Profile (U2TP), the choice of the TT workbench2 was justified during
tool assessment. For the given study, special adapters for CORBA and XML commu-
nication were developed as well as specific transformation for UML2 sequence charts
for U2TP.

For the metrication, Objecteering CASE Tool was used for model metrication,
while CCCC3 and Eclipse Java Metrics4 were used for C++ and Java code metrication
respectively. For reports integration and calculation of derived metrics we had to
develop a specific tool.

5 Results

In this section we are presenting methods we applied for the case study fulfillment. In
addition, we are briefly evaluating the results.

5.1 PIM Recovery and PSM Derivation

The particular interest for the methodology was recovering from the legacy artifacts
the functional architecture also referred to as Platform Independent Model (PIM) in
MDA terminology. Indeed, the Architecture Driven Modernization (ADM) approach
proposes to base the modernization activities on the architectural models rather than
code artifacts. Currently the reverse engineering methods and tools (SOFTEAM Ob-
jecteering, IBM RSA/RSM, BORLAND Together) allow to obtain a UML model,
which we call Platform-Specific Model (PSM) since it is very close to the code. In
this context the PSM-to-PIM method has to provide an abstraction transformation
from the model obtained from the code into a model representing the functional as-
pect of the architecture.

PSM to PIM is often quoted as something possible, however hard to achieve be-
cause it is human knowledge related [1], [2], [3]. Depending on the context and
understanding of what the platform is or what the business logic is, a component
can be either categorized as part of a PIM or not.

For this project we used Objecteering CASE Tool and developed an instrumented
approach [4] for PSM-to-PIM transformation involving human experts. Extracting a
PIM from a PSM basically meant deciding for each model element whether it is part
of the PIM or not. According to the expert decision the PSM elements were marked as
Platform or Functional. The Functional part was then separated from the PSM model
in order to build the PIM model. In order to simplify the decision process we intro-
duced an algorithm based on dependency analysis.

First, packages representing the C++ COTS software libraries and all included
elements were straightly marked as Platform. Secondly, all elements packaged within
the main application folder were marked as Functional. The visualization mechanism
developed highlighted classes that had to be manually revisited since contained ele-
ments (attributed, operations, parameters) dependent on the Platform classes. For
theses classes experts decided case by case which part of the class is Platform and

2 http://www.testingtech.com/
3 http://sourceforge.net/projects/cccc
4 http://metrics.sourceforge.net/

www.manaraa.com

270 A. Sadovykh et al.

which is Functional. Finally the extraction process allowed obtaining Platform and
Functional models. The Functional model constituted the PIM. The Platform model
was used to find replacement COTS components for the Java platform.

During the Java PSM derivation, in addition to forward MDA PIM-to-PSM trans-
formation process, we introduced several mechanisms for reusing the information
from the original legacy system. Based on the Platform dependencies information
from the previous phase, a class substitution mechanism was applied. The classes
from newly integrated Java COTS replaced the references to their counterparts in the
original C++ COTS where it was possible. In particular, this approach worked well
for the XML parsing library Xerces which has a very similar API for C++ and Java.
In addition, the stubs and skeletons generated for CORBA, where also straightly re-
placed. However, in many cases (API for threads, file system and etc.) the correspon-
dences were not identified due to huge differences in the platforms. Some candidate
solutions were outlined by introducing artificial dependency links to most convenient
replacements in order to inform code developers. In addition, for all operations the
original code for operations was put into comments for an easy access by developers.

After creation of the Java PSM, the Java code skeletons were generated. The skele-
tons represented the structure of the application. In addition for each operation a
commented code was inserted showing the original business logic. From this stage the
code migration phase started.

During the modelling phase we encountered that the results of the reverse engi-
neering from C++ are often unsatisfactory since in the C++ development paradigm
the usage of namespaces is not mandatory. The model obtained from source code may
represent a flat structure with all classes in a single list. The classes may be duplicated
and some ghost classes may appear since the reverse engines can not undoubtedly
identify classes. As the result we encourage usage of namespaces for development in
C++ for future development.

The experience gathered during the PSM marking using the dependency analysis
makes us believe that more automation may be developed for this activity in the fu-
ture in order to automate the functional PIM extraction.

5.2 Code Migration

The main migration activity was to check the generated method and class stubs for
consistency and fill the method bodies with the corresponding logic.

The conversion from the C++ code to the Java code could be roughly divided in
three categories:

• Changes required due to the difference in the syntax of programming languages;
• Changes required due to the difference in the idioms, internal working and best

practices adopted in each language;
• Changes required due to the difference in the system dependent libraries and COTS

(commercial off-the-shelf components) available in each language.

The C++ and Java have a lot of common syntax. Arithmetic expressions, cycles
and conditional operators can be copied with minimal or no modifications at all and a
lot of more complex C++ code can be converted to Java by simply removing or re-
placing some keywords and removing the C++ pointer dereference operators.

www.manaraa.com

 On Study Results: Round Trip Engineering of Space Systems 271

On the other hand there are syntax constructions that look similar but have differ-
ence semantics in C++ and Java, and there syntax constructions that are not present in
Java at all.

An example of the former case C++ templates and Java generics share similar syn-
tax but have very different semantics. In particular, it is not possible in Java to create
an instance of the type used as a type parameter. An example of the latter case is the
ability to pass a primitive value by reference as a method parameter in the C++. Such
parameters are called in-out parameters and changes made to their value inside the
method body will be visible to the method caller.

The most prominent difference that is beyond the simple syntax is the C++ and
Java memory models. The common practice in C++ is either to use smart pointers that
automatically call object destructor or to call the object destructor directly. Both prac-
tices ensure that the object is destroyed at some predictable time. Java has automatic
garbage collector that provides no guaranties about object destruction time. Instead of
using Java finalizers all non-trivial C++ destructors should be replaced with some
special “dispose” method. The life-cycle of each class instance should be carefully
examined and the dispose method should be called in the appropriate place.

While both C++ and Java support exceptions and their usage is almost mandatory
in Java, a lot of C++ code still uses the error reporting idiom inherited from the C
programming language, where the method returns some special value to indicate a
failure. It is very difficult to write a code that checks all return values and handles or
propagates failures correctly. When possible, all error handling should be converted to
use exceptions instead of error codes as exceptions provide error propagation feature
automatically and allow more clean way of handling and recovering from failures.

Independently of the language pair used in the migration process all system- and
COTS-dependent code will have to be examined and in most cases replaced with
completely new code. Data collections such as lists, sets and maps, multi-threading
and file system access are usually provided by the standard language libraries. Even if
it is not possible to copy and modify the original code due to the big differences be-
tween libraries provided by different languages their functionality is in general well
understood and the counterpart from the other language is obvious.

Finding a replacement for a non-standard library can be much more difficult. While
C++ and Java usually have either or both open-source and commercial libraries for
each task that can be imagined, these libraries usually have very different API. Fortu-
nately, in the case of this project the only external dependencies were the XML proc-
essing facility and CORBA. The XML processing was performed using the Apache
Xerces which supports both C++ and Java. While Xerces for C++ and Xerces for Java
API’s are different, at least they are provided by the same vendor and have a common
feeling to them. The CORBA has standardized language mappings for C++ and Java
which are very similar, and in fact most of the CORBA-related code was directly
copied from C++ to Java with language syntax corrections only.

Table 1 presents the code migration statistics. The key result is that more than 70%
of cases were rather simple to migrate with the predefined rules. For these cases, one
might consider usage of automatic translation from C++ to Java. For the rest about
30% cases manual code re-writing was possible only and it is hard to imagine that an
automated translation may output a meaningful code. For future research these results
should be carefully studied to be generalised for particular class of problems.

www.manaraa.com

272 A. Sadovykh et al.

Table 1. Code migration statistics

 Simple Conversion Complex Conversion Total Rewrite Manually Added

Classes 232 - 17 21

Fields 557 - 129 219
Methods 1959 116 48 394

5.3 Model-Based Testing

The basic idea of deriving test models from system models is to reuse the information
about the system under (re)development also for developing the test models as the
counterpart to the system.

The tests developed in this project for the FARC application aim to safeguard the
modernization process. The modernized FARC application should behave in the same
way the original application did. Hence, the tests are dedicated to the new system to
verify that the refactoring (and possible extensions) have not broken the functionality
of the original FARC application.

Fig. 2. General approach for model-based testing

For the configuration of test suites as well as for the identification of test interfaces
we can rely on the refactored and modernized models (see Figure 2, right side). Test
configurations and interfaces are derived from the FARC models using transformation
technologies.

The distributed file archive (FARC) uses a server (FARC server) which is accessed
by distributed clients. Each client is split in a user interface (FARCclientgui) and a
model (FARCmodel). The gui is limited to represent the information and pass the input
to the model, which implements the business logic. During this project the model was
the target of modernization. The tests check the interaction between the FARCclientgui
and the FARCmodel (see Figure 3). The test interface is the CORBA interface of the
FARCmodel. All tests address the compound functionality of the FARCmodel and the
FARCServer by checking the correctness of messages and the message interchange
between the Tester (aka FARCclientgui) and the FARCmodel.

www.manaraa.com

 On Study Results: Round Trip Engineering of Space Systems 273

Fig. 3. Test Component Integration

As depicted in Figure 3, the FARCclientgui is replaced by a test component. The
test component is connected with the CORBA interface of the FARCmodel which is
considered to be the SUT. The communication is based on XML encoding on top of
CORBA communication and encoding. Even though the FARCserver is not directly
connected to the test component, it is implicitly tested due to the hidden communica-
tion between the FARCmodel and the FARCserver when the FARCmodel is con-
tacted by the test component.

Since the available behavioural system models were not complete, the derived test
models have been extended manually by additional test behaviour which has been
derived directly from functional requirements specifications. The complete test deri-
vation process started with the creation and annotation of behavioural and structural
system models. We identified the requirements to be tested, annotated the components
with respect to their role in the test process and identified and formalized setup (test
preamble) and tear down (test postamble) behaviour.

The PIM resulting from the code and model abstraction process is the starting point
for the test development (see Figure 1). From the PIM an initial PIT (platform-
independent test model) is derived by adding preambles and postambles to the system
behaviour as well as negative behaviour. From this initial PIT, a more complete PIT is
automatically derived by adding timers, local and global verdicts, and alternatives in
the test behaviour. In the following automated platform-specific transformation, the
PIT is transformed into a PST (platform-specific test model), i.e. by adapting the
communication between the test system and the SUT to the underlying platform tech-
nology the SUT is based on. In the case of the FARC application, the additional XML
encoding is added to the test model. The PST is then transformed to TTCN-3 code,
which is compiled to executable Java code, subsequently. In order to verify the test
results, the original FARC application served as a reference and was used as a test
oracle. This can be understood as a kind of regression testing. In case there is a differ-
ence between both test results, the original FARC application is considered to provide
the right result, i.e. the modernized application failed.

During the project we discovered that the available models are only partially usable
for test derivation. Especially we missed the availability of behavioural specifications.
Without behavioural specification, only with the structural specification on hand, it is
not possible to directly derive the interaction between the tester and the system under
test. Structural specification can only be used to derive test data and interfaces and is
not sufficient for a complete test specification. Moreover even a complete system
model (structure and behaviour) does not cover the complete requirements for testing.
System models are designed with the perspective of a system engineer. They specify

www.manaraa.com

274 A. Sadovykh et al.

the system as it is (or as it should be) but in most cases they do not especially point
out the usage of the system. A tester has to consider both: The specification of the
system’s functionality and structure to be able to determine the expected behaviour,
and the usage of a system to identify the test scenarios and to derive the stimulation
sequences. Thus, for future approaches it would be essential to integrate both perspec-
tives in a common approach in order to benefit from reusing system models for test
development and to get finally to a complete test specification with respect to the
system requirements.

5.4 Metrication

Metrication is a process of measuring some properties of a software component. Usu-
ally the initial metrication results in a quantitative assessment of software, such as it
size and complexity, and than a qualitative interpretation is given.

There is a number of well-known software metrics, such as a number of lines of
code, cyclomatic complexity, cohesion and coupling, and others, but usually their
definition contains a common sense description, and as such there is a leeway when
performing the actual metrication. Our study found that even when considering the
same programming language different tools provide different results for the same
code and the same metric. Considering this fact and the difference in syntax and ex-
pressiveness of programming languages it is very difficult to perform a meaningful
comparison of metrication results between different programming languages.

The other difficulty when dealing with metrics is the subjective factor of all qualita-
tive interpretations. The notion of quality depends on the nature of the software in ques-
tion and the tasks of its users and developers. There is a lot of quality models that at-
tempt to describe software not from the point of its size and complexity (such as number
of lines, number of classes or methods, number of links between classes) but from the
point of its user properties (such as usability, reliability or maintainability). As with the
low-level metrics these high-level software properties are easily defined using the com-
mon sense but the exact formulae or metrication methods are hard to define.

Considering this project’s tasks we decided to use metrics to measure the changes
made to the application during each phase of the migration process, and to measure
the changes between to final result and the original application. The metrication tools
were selected to provide the biggest common set of metrics between the different
states of the application (the original C++ application, the UML model and the final
Java application). It should be mentioned that the choice of metrication tools is very
limited, and that the quality and features of such tools are lacking even for commer-
cial variants. The resulting common set consisted of the following metrics: the num-
ber of lines of code, the depth of inheritance tree, the number of children of a class,
the number of methods of a class, the cyclomatic complexity, the coupling between
classes and the information flow measure. We defined a derived average complexity
metric as a linear function from the values of these low-level metrics. The coefficients
were chosen is such a way as to ensure that the average complexity of the original
C++ software is equal to one to simplify the comparison with the following phases.
The relative weights of each metric were chosen to be equal, but in general it is desir-
able to define relative weights on the basis of the project or application tasks. Table 2
overviews the metrication results.

www.manaraa.com

 On Study Results: Round Trip Engineering of Space Systems 275

Table 2. Metrication Summary

Derived Metric C++ Code C++ PSM PIM Java PSM Java Code

Volume 299 331 291 268 274

Average Complexity 1,00 0,13 0,14 0,14 1,05
Total Complexity 299 43,43 39,35 36,77 289

The volume metric for C++ PSM does not represent the correct value since the

problem of the C++ reverse mentioned in the section 5.1. In addition the PIM metric
also include some platform skeleton classes left in the model for traceability. The real
number should be less then in Java PSM. The code metrics for C++ and Java, as well
as Java PSM are the cleanest and thus the most representative.

Using the described metrication methodology the migrated Java application got a
score of 1,05. The result is quite expected since the size and complexity of the code
that provides the same functionality in C++ and in Java is roughly the same.

The main conclusion made from the metrication activity is that the countable met-
rics by themselves (both low-level metrics that can be obtained automatically and all
kinds of derived high-level metrics) can not provide a verdict on the system quality
and maintainability. They should be used together with other code quality assessment
technologies, such as automatic tests and static analysis.

6 Conclusions

The methodology established for the case study was successfully applied to the FARC
system. The Functional PIM model was extracted using specially developed tooling.
The same process allowed for identifying the platform dependencies. This informa-
tion was used in the next phase for identifying correspondent substitute libraries in
Java. During the PSM derivation, the new Java platform dependencies were integrated
with the PIM model by means of specially developed tooling features. The obtained
Java PSM model was used for generation of the Java code skeletons.

The generated Java skeletons were filled manually with the required functionalities
applying the established migration rules. Despite usage of the MDA, the development
effort was rather significant. However, the process resulted not only in the code but
also in a complete UML2 model containing the documentation and requirements link.
This links were automatically maintained in the model during the development proc-
ess by means of the model/code synchronisation feature.

Metrication methodology established at the beginning of the project was success-
fully applied throughout all the stages: from the analysis of the original C++ applica-
tion through the finally re-engineered JAVA application. However, the metrication
process requires quite a considerable “human intervention” and careful analysis. It is
not a straightforward procedure that could be easily automated. The reengineering
approach used in the RTE Space project resulted in the Java application that is very
similar to the original C++ application in terms of metrics. The resulting Java code
demonstrated less volume than the original C++ application, but slightly increased
average complexity.

www.manaraa.com

276 A. Sadovykh et al.

Finally, the test campaign validated the correctness of the migration from the net-
work protocol – behavioural point of view.

The major goals of the study were achieved: (1) a formal methodology for round-
trip engineering of space systems was developed; (2) the current state of the art in
applicable of-the-shelf technologies and tools was analysed; and (3) the feasibility of
the approach was demonstrated.

References

1. Wadsack, J.P., Jahnke, J.H.: Towards Model-Driven Middleware Maintenance. In:
OOPSLA 2002, Seattle, Washington, USA (2002)

2. Reus, T., Geers, H., Deursen, A.: Harvesting Software Systems for MDA-Based Reengineer-
ing. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 213–225.
Springer, Heidelberg (2006)

3. Boronat, A., Carsi, J.A., Ramos, I.: Automatic reengineering in MDA using rewriting logic
as transformation engine. In: CSMR 2005, Manchester, UK (2005)

4. Vigier, L., Sadovykh, A.: PSM-to-PIM, a Pragmatic Way. In: ECMDA 2008 – Workshop
on Model-driven Modernization of Software Systems, Berlin (2008)

5. Busch, M., Chaparadza, R., Dai, Z.R., Hoffmann, A., Lacmene, L., Ngwangwen, T.,
Ndem, G.C., Ogawa, H., Serbanescu, D., Schieferdecker, I., Zander-Nowicka, J.: Model
Transformers for Test Generation from System Models. In: Conquest 2006. Hanser Verlag,
Berlin (2006)

6. Zander, J., Dai, Z.R., Schieferdecker, I.:From U2TP Models to Executable Tests with
TTCN-3 – An approach to Model Driven Testing. In: IFIP 17th Intern. Conf. on Testing
Communicating Systems - TestCom 2005, ISBN: 3-540-26054-4, (2005)

7. Baker, P., Dai, Z.R., Grabowski, J., Haugen, O., Schieferdecker, I., Williams, C.: Model-
Driven Testing: Using the UML Testing Profile. Springer, Heidelberg (2007) ISBN
3540725628, 9783540725626

8. Engel, K.D., Rennoch, A., Schieferdecker, I.: Architecture-driven Test Development. In:
1st Workshop on Model-based Testing in Practice (MoTiP 2008), Berlin, Germany (2008)

9. Chaparadza, R., Busch, M., Dai, Z.R., Hoffmann, A., Lacmene, L., Ngwangwen, T.,
Ndem, G.C., Serbanescu, D., Schieferdecker, I., Zander-Nowicka, J.: Transformations:
UML2 System Models to U2TP models, U2TP models to TTCN-3 models and, TTCN-3
Code Generation and Execution. In: ECMDA 2006 Workshop on Model-Based Testing,
Bilbao, Spain (2006)

10. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice-Hall,
Inc., Englewood Cliffs (1996)

www.manaraa.com

MoPCoM/MARTE Process Applied to a
Cognitive Radio System Design and Analysis

Ali Koudri1,2, Joël Champeau2, Denis Aulagnier1, and Philippe Soulard3

1 Thales Aerospace Division
firstname.lastname@fr.thalesgroup.com

2 Ensieta
joel.champeau@ensieta.fr

3 Sodius
psoulard@sodius.fr

Abstract. Today, developments of real time embedded systems have
to face new challenges. On the one hand, economic laws, such as Time-
to-market, require a reliable development process allowing quick design
space exploration. On the other hand, fast increasing technology, as
stated by the Moore’s law, requires techniques to handle the resulting
productivity gap. Model Driven Development has been widely used in
response to those issues. Benefits of such approach are numerous and
have been demonstrated through several experiments. We present in this
paper the Model Driven Development MoPCoM methodology, dedicated
to SoC / SoPC design and analysis, and based on the use of the MARTE
profile. This approach refines the MDA Y-Chart in order to ease de-
sign space exploration and IP integration. We illustrate our approach on
Cognitive Radio System development implemented on an FPGA. This
work is part of the MoPCoM research project (http://www.mopcom.fr)
gathering academic and industrial organizations.

1 Introduction

Since few years, the market of System-on-Chip (SoC) has grown rapidly. It is ex-
pected to worth $56 billion in 2012, which represents almost 24% annual growth
rate. As the technology evolves rapidly, according to the Moore’s law, entire sys-
tems, made of processors, memories or sensors, can now be integrated on SoC or
SoPC (System-on-Programmable-Chip) like FPGA (Field Programmable Gate
Array).

Indeed, only reliable methodologies, based on well-adapted formalisms and
tools, can handle the growing design complexity of such systems. The challenges
posed by design of SoC/SoPC consist mainly in reducing TTM (time-to-market),
costs and the productivity gap due to the rapid evolution of the technology [1].
To achieve those goals, SoC/SoPC design methodologies have to tackle co-design
issues such as design space exploration, reuse of IPs (Intellectual Property) and
high level synthesis.

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 277–288, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

278 A. Koudri et al.

Model Driven Development (MDD) adds valuable contributions to SoC/SoPC
Design: Analysis enhancement, Communication and Traceability improvement,
Technology breakpoints reduction, etc.

Recently, the OMG (Object Management Group) which has supplied the Uni-
fied Modeling Language (UML[2]) and the Model Driven Architecture (MDA[3])
paradigm, has standardized the UML profile for Modeling and Analysis of Real
Time Embedded Systems (MARTE profile[4]). This profile extends UML for
Real Time Embedded Systems (RTES) design and analysis.

In this paper, we present a new methodology dedicated to SoC/SoPC design
called MoPCoM. It is based on the use of MARTE profile and is tooled in
the Rhapsody R©modeling tool. In the next section, we present related works
on SoC/SoPC design. We then provide a general overview of the methodology
illustrated on a cognitive radio design implemented on an FPGA.

2 Related Works

Transforming customer requirements into implementations making good trade-
offs between performances and costs requires relevant analysis activities based on
appropriate languages and tools. Since few years, the trend in Electronic System
Level (ESL) is to foster fast design space exploration providing executable or
verifiable specifications to customers at several abstraction levels in order to
mitigate risks and avoid useless expenses and waste of time.

Several approaches have been applied in order to tackle issues posed by eco-
nomic laws and rapid evolution of technology. Among them:

– High Level Synthesis [5] aims at transforming high level behavior specifica-
tion into optimized architecture,

– IP reuse aims at building systems assembling IPs which requires standard
interfaces or wrappers [6],

– Platform Based Design [7] consists in configuring a generic platform contain-
ing configurable components like micro-processors or FPGA to suit a specific
kind of application.

Related works on MDA based RTES methodologies and associated tools are
numerous. In this section, we give a brief overview of the main ones. In [8], au-
thors highlight which native concepts of UML to use in order to design RTES in
the ACCORD/UML methodology. In [9], authors present a methodology based
on the use of UML and Platform Based Design called Metropolis. They highlight
the necessary orthogonalization of several aspects: computation and commu-
nication, function and architecture, behavior and performance. They provide
a set of stereotypes and a dedicated framework supporting function / plat-
form mapping, refinements and code generation. In [10], authors present an
object oriented methodology based on the use of UML: the HASoC methodol-
ogy (Hardware and Software Object on Chip). They first provide an abstract
model of the system that is executable (uncommitted model) and proceed to
the partition into hardware and software parts taking into account implementa-
tion constraints (committed model). In [11], authors combine the visual features

www.manaraa.com

MoPCoM/MARTE Process Applied to a Cognitive Radio System Design 279

of UML with the simulation and debugging features of the SystemC language
in a methodology called UPES (Unified Process for Embedded Systems). This
"specify-simulate-debug-refine" methodology is based on the use of the UML for
SystemC profile and allows users to capture behavioral and structural aspects
of the system at several levels of abstraction. The Gaspard methodology[12] is
dedicated to Multi-Processors Systems-on-Chip (MPSoC) design. It is based on
the use of a dedicated profile called "Gaspard Profile" allowing regular repeti-
tive structure platform modeling. The Gaspard environment provides TLM and
RTL code generation and bridges to several analysis tools. At last, the Har-
mony/ESW (Embedded System Workflow)[13] is a Rational Unified Process
(RUP) based methodology dedicated to RTES design. It describes the rationale
that guide RTES development from requirements capture to implementation
using SysML[14] and SPT[15] profiles.

In the next sections, we present the MoPCoM process and an overview of
the application that has been implemented. It is based on the use of SysML,
Software Defined Radio (SDR) and MARTE profiles.

3 Process and Application Overview

The MoPCoM methodology is a refinement of the MDA Y-chart dedicated to
design space exploration and Platform Based Design. It takes as input functional,
non-functional and allocation requirements expressed in SysML. Figure 1 gives
an overview of the process, highlighting 3 modeling levels:

– The Abstract Modeling Level (AML) is intended to provide the description
of the expected level of concurrency and pipeline through the mapping of
functional blocks onto a virtual execution platform,

– The Execution Modeling Level (EML) is intended to provide a generic plat-
form defined in terms of execution, communication or storage nodes in order
to proceed to coarse grain analysis,

– The Detailed Modeling Level (DML) is intended to provide a detailed de-
scription of the platform in order to proceed to fine grained analysis. It
allows RTL code generation for hardware (VHDL) and software (C) parts
including glue code (drivers).

For each level, we identify which subsets of MARTE are mandatory and we
capture modeling rules through OCL constraints applied to the process model.
Moreover, support for automatic code and documentation generation as well
as metrics audits are implemented in the Rhapsody R©modeling tool using the
MDWorkbench transformation tool (see section 8).

We have developed as a demonstrator for the MoPCoM methodology a Cog-
nitive Radio System (CRS) that adapts its behavior to its environment [16,17]
following the characteristics of available Radio Access Technologies (RAT), such
as bandwidth or localization, in the electro-magnetic environment. Depending
on the load, an area is selected and the CRS dynamically configures itself in or-
der to communicate using corresponding protocol. We focus in this paper on the

www.manaraa.com

280 A. Koudri et al.

Fig. 1. MoPCoM Process Overview

"Locate RAT Source" Use Case which consists in detecting radio communication
signals and characterize their main parameters. This system is implemented on
a Xilinx ML-506 FPGA, including analog and digital devices.

4 Requirements Capture and Functional Analysis

Meeting functional as well as non-functional requirements in time and budget
is the goal of every development. Requirements formalization is mandatory to
achieve those goals and avoid any ambiguity. As requirements formalization is
still an open issue, we define in this paper formalized requirements as require-
ments that are "executable or verifiable".

Using Use Cases is a good approach in order to formalize, analyze and doc-
ument functional requirements, leaving aside implementation issues. Use cases
are analytical tool capturing the causality links between events and behaviors.
Moreover, Use Case scenarios carry over directly into the testing process through
the interfaces identification.

In figure 2, Use Cases 1© are described through sequence diagrams 2© cap-
turing nominal, alternate or exception usage scenarios. MARTE annotations
3© are used to capture real-time constraints written in VSL (Value Specification
Language) provided by the profile and dedicated to expression of Non-Functional
Properties. All instant or duration observations are related to an ideal clock
that measures the progression of the real time, which is provided in the MARTE
model library. Use case executability [13] requires the definition of its behav-
ior 4© using activity diagram or statechart and regarding the causality model
described in the scenarios.

www.manaraa.com

MoPCoM/MARTE Process Applied to a Cognitive Radio System Design 281

Fig. 2. Locate Nominal Scenario with Real-time constraints and Traceability

The purpose of the functional analysis is to identify business classes, their rela-
tionships and their responsibility as well as possible patterns that can be applied
in order to address specific issues such as dynamic reconfiguration expressed at
functional level. This can be achieved through black box / white box analysis
and iterative breakdowns followed by scenarios and behavior refinements.

Efforts must focus on the functional design in purpose of reuse, flexibility or
configurability. Functional blocks are defined against their provided and required
interfaces in order to foster loose coupling between block definitions. Some of
the well-known patterns successfully applied in the software domain[18] can be
reused in the system domain as well as in the hardware domain.

At this point, we describe Signal Processing in C/C++ as input to the
Mentor Graphics CatapultC R©and GAUT(http://web.univ-ubs.fr/lester/
www-gaut/) tools in purpose of High Level Synthesis. For each block stereotyped
«HLS», standing for High Level Synthesis, C code is generated.

5 Abstract Modeling Level

While the functional analysis deals with the algorithmic aspects of the system,
this level focuses on concurrency, time and communications. Indeed, we need
appropriate concepts, related to Models of Computation (MoC), in order to
proceed to relevant analysis like performance analysis or deadlock detection.

http://web.univ-ubs.fr/lester/www-gaut/
http://web.univ-ubs.fr/lester/www-gaut/

www.manaraa.com

282 A. Koudri et al.

Fig. 3. Functional to AML Platform Allocation

A MoC defines the semantics that rule concurrent behaviors and communi-
cations. It has several characteristics related to time (causality, clocked or phys-
ical time), function (algorithm or Ordinary Differential Equation ODE), data
(abstract data type, bit true or bit vector) and communication (Inter-Process
Communication, shared variables, FIFO, wires), depending on the considered
abstraction level.

MoCs provide different capabilities in terms of analysis and one of the goals of
system designers is to select appropriate MoCs and proceed to required analysis.
Tools supporting mixing several MoCs like Ptolemy [19] are useful when system
under study combines heterogeneous parts (analog, digital, GALS, etc).

Concurrency in UML can be expressed at several levels. At the behavioral
level, one can use for example AND states (state machines) or fork nodes (ac-
tivity). At the structural level, the meta-attribute "isActive" of the UML Class
bears the notion of concurrent entity. Concurrency patterns [20] can also be
used in order to address this issue. Still, missing information related to real-time
features are required to proceed to appropriate analysis.

The MARTE profile provides all those missing features through the notion of
RTUnit in the High Level Application Modeling (HLAM) sub-profile. «RTUnit»
stereotype can be used to classify a set of concurrent objects having real-time
characteristics. Actually, an RTUnit is a SysML Block with additional real-time
features. An RTUnit provides / requires a set of real-time services (RTService)

www.manaraa.com

MoPCoM/MARTE Process Applied to a Cognitive Radio System Design 283

Fig. 4. KPN MoC Support

and owns at least one real-time behavior (RTBehavior) with (un)bounded queue.
Real-time behaviors can be decomposed into real-time actions (RTAction).

Communications are point-to-point and occur through RTeConnectors be-
tween «RTUnit»instances in the context of their owning classifier. Ports and
RTeConnectors implement the high level primitives that support communica-
tion mechanisms.

For instance, figure 3 shows an allocation of the functional design 1© to AML
platform 2©, which mixes three models of computation: CT (Continuous Time),
KPN (Kahn Process Network) and DE (Discrete Event). Functional behaviors
are turned into real-time behaviors 3©, for which we precisely specify real-time
features. For example, the KPN MoC is supported thanks to a components model
library into which we define "KPN Port" and "KPN Connector" as behaviored
classifiers (figure 4) that are instanciated each time the «KPN»stereotype is used
on ports or connectors. Transformations rules adapt then the functional behavior
to take into account the knowledge of those communication mechanisms.

Allocation constraints are applied in order to precisely specify the MoC, es-
pecially constraints related to required level of concurrency from which special
blocks dedicated to data multiplexing / demultiplexing can be inferred.

6 Execution Modeling Level

This level aims at analyzing execution of the AML allocated model onto an
abstract execution platform. Performed analysis abstract costs related to Hard-
ware (CPU, FPGA) or Hardware Abstraction Layers (HAL – Operating Systems,
Middlewares) through statistical evaluations [21].

www.manaraa.com

284 A. Koudri et al.

Platform and allocation are defined regarding trade-offs between implemen-
tation, performances and costs. In the context of design space exploration, all
those aspects must be checked by a top-down refinement analysis. EML archi-
tectural designs emphasize the number of processing elements, organization of
data or communication media and their characteristics. Interfaces between con-
nected elements and communication protocols are considered from a high level
perspective: data are bit true and transactions are inaccurately timed.

Main nodes of interest are computing resources gathering programmable com-
ponents as well as hardware accelerators, storage resources gathering all kinds
of data storage, communication media gathering all kinds of communication link
providing transaction services, scheduling resources scheduling tasks and man-
aging access to resources. All those resources are characterized by their relative
execution speed and services they offer to the application.

Fig. 5. AML to EML Platform Allocation

www.manaraa.com

MoPCoM/MARTE Process Applied to a Cognitive Radio System Design 285

Allocation is defined with respect to expected performance or other non-
functional concerns and clocks are used to measure the progression of physical
time in order to check real-time constraints.

In order to model abstract execution platforms, the MARTE profile provides
the Generic Resource Modeling (GRM) sub-package. It allows modeling physi-
cal or logical persistent entities providing a set of resource services. A resource
is characterized by several non-functional properties such as latency, cost or
power consumption. Besides, it deals with resources usage and must be used in
conjunction with the Generic Quantitative Analysis Modeling (GQAM) package
and their subpackages: Performance Analysis Modeling (PAM) and Schedula-
bility Analysis Modeling (SAM) in purpose of analysis. The main goals of this
level are communication bottlenecks detection and coarse grain performance
estimations.

The figure 5 shows a simplified view of the allocation of the AML architecture
1© onto the EML platform 2©. For instance, this platform contains two levels of
allocation: one representing the HAL and one representing the hardware nodes.
Computing resources can be targetted by either spatial or temporal allocations
(or both). For example, the Supervision Computing Resource drives the config-
uration of each element and dynamic reconfiguration and is characterized by a
relative speed factor equal to 1.0 4©. The HAL contains one scheduler managing
tasks with an Earliest Deadline First (EDF) policy 3©. Interfaces and communi-
cation protocols are defined on a transactional level such as OCP/IP TLM [22].
For instance, the communication media implements a transport primitive and
owns several NFP characteristics 5©.

Analysis scenarios emphasize data rates and latencies as well as memory size
or context switching in the case of dynamic reconfiguration. For example, we
show in figure 5 an analysis scenario highlighting costs of resources usage 5©.
Analysis feedbacks drive potential refactorings on the platform as well as on the
MoC or the functional architecture. Actually, those refactorings depend mainly
on the skill of the engineers to proceed to the right adjustments.

7 Detailed Modeling Level

This levels aims at providing more accuracy to the previous model in order to
allow relevant analysis leading to RTL code generation, e.g. C or VHDL code.
The topology that has been defined in the EML level is refined. For instance,
computing nodes are turned into processors or FPGAs, storage nodes become
SRAM or ROM, scheduling nodes become Operating Systems, etc.

Two levels of descriptions of the hardware parts are provided: one focuses
on the logical features (services) while the other focuses on the physical feature
(non-functional properties). For instance, hardware services can be classified
in computing, storage or communication services and hardware non-functional
properties include features like dimension, weight or even price. Refinement of
the platform involves data, interfaces or protocol refinements.

www.manaraa.com

286 A. Koudri et al.

Hardware abstraction layers provide set of services dedicated to tasks and re-
sources management. Actually, HAL are characterized by their API. Examples of
such API can be found in the POSIX(http://standards.ieee.org/regauth/posix/)
or OCP/IP (http://www.ocpip.org/home) specifications.

The Software Resource Modeling (SRM) and Hardware Resource Modeling
(HRM) MARTE sub-profiles provide concepts to describe such a detailed plat-
form. The SRM package provides a set of concepts related to HAL modeling
including operating systems as well as middlewares while the HRM package pro-
vides concept to model platforms from logical and physical perspectives.

Time model is cycle accurate and data are bit accurate. Allocation and anal-
ysis from the previous level are refined in order to take into account platform
refinement.

8 MoPCoM Tooling

The MoPCoM process tooling relies on tools related to OMG standards (MDA,
UML, MOF, XMI) and Eclipse (EMF, EMOF, ECore):

– The KerMeta language from INRIA[23] is used to formalize and validate the
metamodels (concepts and constraints),

– The Rhapsody UML Modeler is used to model applications as well as plat-
forms according to the defined levels,

– The Sodius MDWorkbench tool is used to transform models (model-to-
model) and generate code or documentation from models (model-to-text).

The generator is delivered as a white-box add-on, where all transformations and
generation rules are available for any customization. In addition, the MoPCoM
methodology has been modeled using a SPEM [24] derived metamodel dedicated
to co-design process modeling in purpose of better capitalization or improvement.

RTES modeling requires an action language for low-level expressions to com-
plete the high-level UML semantics and diagrams, and to specify operation bod-
ies, trigger/guard/action on transitions and states as well as data declarations.
The selection of the right action language raises questions about textual or graph-
ical notation, and general versus HDL-specific language accessible to designers,
taking into account learning curves. The C++ language turned to be a conve-
nient choice and only a C++ subset is used in the models (along with some
macros for event and port handling). C++ expressions are parsed for VHDL
generation thanks to a C++ syntactic metamodel allowing grammar to model
transformations.

VHDL code generator, whose deliverable is synthesizable VHDL code, takes
as input DML allocated model. Structural parts are derived from the platform
model, where VHDL entities are derived from hierarchy of instances. UML ports
are translated to VHDL ports thanks to communication protocols and data.
Behavioral parts are derived from application models, where VHDL architectures
are mainly issued from attributes, operations and state machines.

Briefly, a finite state machine leads to the definition of an enumerated type
for the active state, one per composite state (containing sub-states). The code

www.manaraa.com

MoPCoM/MARTE Process Applied to a Cognitive Radio System Design 287

structure is based on an edge-clocked case VHDL statement, and all trigger,
guard and action expressions (on transitions, entering, in or exiting states) can
be generated either in line, or in single procedures. The allocation package brings
additional information about the mapping of the application on the platform.
The generator combines the declared entity ports and the data/control needs of
the architecture to map the components and if required (if not point-to-point),
instantiate the control code (or state machine) of the communication channel
protocols. Depending on the communication channel, several basic mechanisms
are provided to handle events (transient or registered) and the required glue
code is automatically inserted.

9 Conclusion

In this paper, we have presented our SoC/SoPC Design Flow based on the use
of UML and dedicated profiles. The tool has generated 55420 lines of code for
289 classes including business classes, data structures, interfaces and commu-
nications. Although some improvements can be done, particularly in the MoCs
support, we have shown that MDD techniques, based on the use of MARTE pro-
file, can fit into Co-Design through an example of Cognitive Radio Application
implemented on FPGA. This MDD approach refines the MDA Y-Chart in order
to tackle achievements of the ESL community. Further works will be focused on
providing a better support for High Level Synthesis code generation. This work
is part of the MoPCoM project (http://www.mopcom.fr), gathering academic
and industrial organizations and supported by the French Agence Nationale de
la Recherche (RNTL 2006 TLOG 022 01), the "Media and Networks" "cluster
of clusters" and Brittany and Pays de la Loire regions.

References
1. ITRS: Design. Technical report, International Technology Roadmap For

Semiconductors (2007)
2. OMG: UML 2.0 superstructure. Technical Report formal/05-07-04, Object Man-

agement Group (2005)
3. OMG: Mda guide version 1.0.1. Technical report, Object Management Group

(2003)
4. OMG: Uml profile for marte, beta 1. Technical Report ptc/07-08-04, Object Man-

agement Group (2007)
5. Stitt, G., Vahid, F., Najjar, W.: A code refinement methodology for performance-

improved synthesis from c. In: ICCAD 2006: Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design, pp. 716–723. ACM, New York
(2006)

6. Koudri, A., Meftali, S., Dekeyser, J.-L.: IP integration in embedded systems mod-
eling. In: 14th IP Based SoC Design Conference (IP-SoC 2005), Grenoble, France
(December 2005)

7. Sangiovanni-Vincentelli, A., Carloni, L., Bernardinis, F.D., Sgroi, M.: Benefits and
challenges for platform-based design. In: DAC 2004: Proceedings of the 41st an-
nual conference on Design automation, San Diego, CA, USA, pp. 409–414. ACM,
New York (2004)

www.manaraa.com

288 A. Koudri et al.

8. Gerard, S., Terrier, F.: Uml for real-time: which native concepts to use? ACM 13,
17–51 (2003)

9. Chen, R., Sgroi, M., Lavagno, L., Martin, G., Sangiovanni-Vincentelli, A., Rabaey,
J.: Uml and platform-based design

10. Edwards, M., Green, P.: Uml for hardware and software object modeling,
pp. 127–147 (2003)

11. Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S.: Designing a unified process
for embedded systems. In: The Fourth International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software (MOMPES), Braga, Portu-
gal. IEEE Computer Society, Los Alamitos (2007)

12. Piel, E., Attitalah, R.B., Marquet, P., Meftali, S., Niar, S., Etien, A., Dekeyser,
J.L., Boulet, P.: Gaspard2: from marte to systemc simulation (March 2008)

13. Douglass, B.P.: Real-Time Agility: The Harmony Method for Real-Time and Em-
bedded Systems Development. Addison-Wesley Professional, Reading (2009)

14. OMG: Systems modeling language specification v1.1. Technical Report ptc/
2008-05-16, Object Management Group (2008)

15. OMG: Uml profile for schedulability, performance, and time, version 1.1. Technical
Report formal/2005-01-02, Object Management Group (2005)

16. Mitola Joseph, I.: Cognitive radio for flexible mobile multimedia communications.
Mob. Netw. Appl. 6(5), 435–441 (2001)

17. Hachemani, R., Palicot, J., Moy, C.: A new standard recognition sensor for cogni-
tive radio terminals. In: EURASIP, Kessariani, Greece (2007)

18. Gamma, E., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

19. Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for simu-
lating and prototyping heterogeneous systems. IEEE 10, 527–543 (2002)

20. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-
Time Systems. Addison-Wesley Professional, Reading (2002)

21. Kountouris, A.A.: Safe and efficient elimination of infeasible execution paths in wcet
estimation. In: RTCSA 1996: Proceedings of the Third International Workshop
on Real-Time Computing Systems Application (RTCSA 1996), Washington, DC,
USA, p. 187. IEEE Computer Society, Los Alamitos (1996)

22. Bacchini, F., Maillet-Contoz, L., Kashiwagi, H., Donovan, J., Makelainen, T.,
Gajski, D.D., Greenbaum, J., Nikhil, R.S.: Tlm: crossing over from buzz to
adoption. In: DAC 2007: Proceedings of the 44th annual conference on Design
automation, pp. 444–445. ACM, New York (2007)

23. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-
oriented meta-languages. In: Proc. of MODELS/UML, Montego Bay, Jamaica.
LNCS. Springer, Heidelberg (2005)

24. OMG: SPEM 1.1. Technical Report ptc/05-01-06, Object Management Group
(2005)

www.manaraa.com

Managing Flexibility: Modeling Binding-Times
in Simulink

Danilo Beuche1 and Jens Weiland2

1 pure-systems GmbH, D-39106 Magdeburg, Germany
danilo.beuche@pure-systems.com

2 Reutlingen University, Department of Technology, D-72762 Reutlingen, Germany
jens.weiland@reutlingen-university.de

Abstract. Model-based development is supposed to improve the devel-
opment efficiency by raising the abstraction level and generating appli-
cations instead of manually coding the application in low level languages
like C. One of the successful incarnations of this idea is the MATLAB
Simulink tool chain. These tools are now widely used in the automotive
industry not only to simulate control devices but also to generate prod-
uct quality code from it. Like with traditional concepts reuse of created
models is an issue. When this can be done efficiently, an additional level
of effort reduction (and quality improvement) will be achieved. While
MATLAB Simulink in combination with code generators provides good
support for creating models for single application, and libraries of models,
it does not provide sufficient support for more complex reuse scenarios
with fine grained variations across the model(s). This paper will extend
the approach developed by an automotive car manufacturer to address
these issues. After a discussion of the basic concept the paper will put
a special focus on support for flexible binding times since this is one of
the crucial issues for reusing models across different projects with differ-
ent need for run-time switchable variations (development/testing) and
static decisions for product generation (resource efficiency in terms of
code size and run-time). A concrete application supporting the deploy-
ment of these concepts in a project, developing mass production control
units, is discussed in the following section.

1 Introduction

While in its early days, the automotive industry produced relatively simple cars
with not much variability, like the Ford Model T, todays cars are highly config-
urable and provide quite a lot of variability. Due to the huge amount of vehicle
configurations and varying requirements related to differences in hardware, reg-
ulatory, and market behavior there are many aspects of this variability [14].
Today embedded software plays a central role since most functions in a car
are software-based. Thus, functional variability leads directly to variability in
the embedded software. Development of embedded software is increasingly done
model-based, using code generators to produce production code directly from

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 289–300, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

290 D. Beuche and J. Weiland

models. Mathworks Matlab tool chain with its extensions Simulink and State-
flow is an important exponent used in the automotive industry. The graphical
modeling languages enable developers to specify, model, and simulate signal flow
oriented and state based systems. The implementation can be done using code
generators like The Mathworks Realtime Workshop Embedded Coder or dSpaces
TargetLink. Simulink models are basically signal flow graphs composed of ele-
mentary blocks and state charts. Complex subfunctions can be represented as
sub-system blocks, which internally are again signal flow graphs. Signal con-
nections represent data that flows between model blocks while simulating the
model. Simulink provides a large set of blocks for functions like logical oper-
ations or signal routing. Each block has a set of parameters, which allow the
configuration of the blocks behavior, properties, and its presentation. Code gen-
erators like TargetLink add additional parameters to maintain code generation
related information. To properly deal with variability in the automotive context,
an economic view on reuse of specifications, models, architectures, components,
or even documentation and tests, is essential. Model-based software development,
with a holistic use of models in all phases of development including abstraction
from concrete target platforms, is an important step towards improved reuse.
However, when it comes to systematic consideration of variability (e.g. variable
data or functions), additional concepts are a necessity. Especially, when applying
model-based development using Simulink and Stateflow, deficits with respect to
variability handling become obvious:

– There are only insufficient description capabilities for modeling of structural
variability in Simulink. This variability cannot be described unambiguously,
and process safe. Process safe in this context means that in every phase of
software development variability and its implications can be traced unam-
biguously.

– Due to missing variability handling concepts in Simulink checking of model
configurations in order to detect invalid variability configurations is not pos-
sible.

[6] describes basic concepts for systematic modeling and configuration of vari-
ability in Simulink, used to develop automotive software. The article presented
here goes further and discusses a concept for implementing flexible binding time
support. Binding times specify the point in time at which variability is removed
and a concrete instantiation of a vehicle function is selected. Depending on the
use case, an optional vehicle function may be removed completely, thus, there
is no code for it on the vehicles electronic control unit (ECU) at all, or is just
turned off using a data parameter, but remains present in the code and can be
activated later, e.g. at a service station or at run-time. Selection of binding times
has a strong influence on the amount of code present in a vehicle (in general,
the later the decision is made, the more code is generated). Flexible selection
of binding times permits to control this by choosing for each point of variation
the optimal binding time. Due to the high number of produced hardware units
even small difference in code size can have a huge impact on production cost
of these units. The remainder of this paper describes the approach for flexible

www.manaraa.com

Managing Flexibility: Modeling Binding-Times in Simulink 291

binding time support based on the concepts from [6]. In section 2 basic concepts
are presented. Section 3 takes a closer look at binding times, followed by section
4, which discusses in detail the taken approach for modeling and configuration
ofing binding times. The application of these concepts is shown in section 5.
Section 6 provides a summary of the paper. The presented concepts are based
on the tool chain Matlab 7.1, TargetLink 2.1 and pure::variants 2.4.

2 Modeling and Configuring Variability in Simulink

The concepts for handling variability in Simulink presented in [6] are based on
the Generative Software Development Model [4]. Based on the engineering of
system families its main goal is an automated generation of individual family
members. The main element of this concept is the Generative Domain Model.
It separates application oriented concepts (problem domain concepts) from the
implementation (solution domain concepts). Configuration knowledge is used for
mapping both domains onto each other and, thus, it explicitly links them to-
gether. To describe the application oriented concepts feature modeling is being
used. Feature models provide an abstract representation of variability in a sys-
tem family on the problem domain level. Feature models contain common and
variable features and their dependencies [2,4,12]. Starting point for describing
variability in Simulink-models is the variation point (see meta model shown in
Fig. 1). The variation point encapsulates variability information, which has to be
added to the Simulink model in order to allow systematic handling of variability.

Fig. 1. Variation point meta model

Central element of a variation point is its uniquely identifiable VariantParam-
eter. This parameter is the actual point where functional variants are created
by applying different settings to this parameter. The variation point permits
only for a finite number of choices. These choices are represented in the Vari-
antCollection and are mapped to unique variant parameter values. According
to [9] a variation point identifies one or more locations at which variation will
occur.. These locations are internally represented by mechanisms, which remove
variability once the variation point has been configured. The block library of

www.manaraa.com

292 D. Beuche and J. Weiland

Simulink provides a number of blocks which can be used to realize variability
mechanisms [10,15]. Examples are:

– Conditionally executed subsystems (Enabled Subsystem-block, Function Call
Subsystem-block),

– Signal routing blocks (Switch-block, Multiport Switch-block),
– Logical gates (AND-block, OR-block),
– Configurable subsystems (Configurable Subsystem-block),
– . . .

Each of these blocks has its own way of controlling the variable functionality.
E.g. a function encapsulated in an Enabled Subsystem can be (de)activated de-
pending on the value of the Enabled signal sent to this block. Thus, the Enabled
Subsystem is well suited for representing optional functionality in the model. In
similar ways logical conditions represented by AND or OR blocks are able to
control the execution of optional functionality by controlling the transmission
of input signals depending on the setting of a selected input signal. The Switch-
block selects a variant based on a Control-signal, similar to the if-else found in
programming languages like C. Therefore the Switch-block is well suited espe-
cially for modeling alternative functionality. Blocks which resolve variability are
called Resolution Blocks in our context. Most of these blocks require an input
signal, which controls the execution of the block. To perform the actual selection
of a variant a designated Control Block should be used for providing the input
signal. This block can be represented by a parameterized Constant-block or a
Data Store Read-block. Depending on the value represented by the control block,
the respective variant is executed.

Fig. 2. Variability mechanism example

Fig. 2 shows an Enabled Subsystem whose execution is controlled by a
Constant-block. The Constant-block references the workspace parameter
VAR IntervalControl. In our example this parameter represents the Variant-
Parameter. Depending on the value of this parameter one or zero the Enabled
Subsystem Adjust_Rainsensor_Properties will be executed or not. The set
of control and resolution blocks blocks is called Variant Blocks. To clearly sep-
arate these blocks from other Simulink blocks, an additional mask parameter,
e.g. VarInfo, is used. Mask parameters extend Simulink-blocks with additional
properties. By adding the parameter VarInfo to a block, the regarded block will
be treated as variant block. The mask parameter references the variation point,
to which the block is related.

www.manaraa.com

Managing Flexibility: Modeling Binding-Times in Simulink 293

3 Taking Binding Time into Account

A variation point is a kind of place holder, which must be filled by a valid variant
instance at a certain point during creation of a system variant. The decision,
which of the possible instances for variation point to select, is called binding.
And consequently the time at which this decision occurs is called binding time.
There are different binding time models described in literature ([3,8,11]), there
are even specialized models for embedded automotive software [7]. The binding
time model used for the approach in this paper is based on the FODA binding
time model [11]. It distinguishes between three different binding times:

– CompileTime: The variation point is bound during compilation.
– LoadTime: The variation point is bound when the system starts up, e.g. by

reading parameters from databases or from the system environment.
– RunTime: Variation points can be bound at any time during the execution

of the system.

Since model based development introduces additional abstraction level at which
variation points can be bound, the approach introduces a new binding time:

– ModelConfigurationTime: Variation points are bound when a variant-rich
model is instantiated / (in our context configured) to represent a single
variant.

In the automotive context most decisions are taken before run-time due to im-
proved performance and resource consumption. There are also regulatory re-
quirements, demanding that certain decisions cannot be changed while the car
is running, i.e. the software is being executed. This is somewhat contradictory
with the wish to bind the variations as late as possible during the production or
even the delivery of the car , , since this would reduce logistic efforts (just one
programmed hardware unit for a set of supported engine types vs. differently
programmed hardware units for each engine type).

4 Towards a Binding Time Concept for Simulink Models

A flexible selection of a binding time for individual variation points adds an-
other dimension of decision since for each variation point there could be one
or more binding times at which the decision can be made. The decision, which
binding times to offer should be independent from the functional variability in
the problem domain. With traditional software approaches based on manually
written code, this introduces a huge challenge, since code supporting different
binding times will look different. This becomes evident in scenarios where or-
ganizations are forced to provide the same functionality with different binding
times. An example is the concept of pre-compile time configured components vs.
post-build configured components, in C. To provide support for the first binding
time (basically compile time) #define/#ifdef preprocessor statements are used.

www.manaraa.com

294 D. Beuche and J. Weiland

For post build configuration normal if statements are used. Due to the differ-
ent semantics of these two concepts more or less separate implementations are
necessary. In model-based development such problems can be solved much more
efficiently with an integrated binding time model, since the code generator can
take the requested binding time into account when generating code from models.

4.1 Influence of Code Generation on Variability in Simulink Models

The challenge of introducing binding time support in Simulink results from the
original purpose of Simulink as a simulation tool, not intended for generating
code. With respect to the functionality of a (simulated) system, there is no need
for anything but run-time binding, since this is the most flexible approach and
hardware resources such as memory and processing power are readily available.
The situation is different for code generation when it comes to production code
generation, where the memory and also processing power on the embedded sys-
tem are a very limited resource. The selection of appropriate variant blocks and
their configuration as well as the selection and configuration of the used code
generator have a significant impact on the code generated from variant-rich
Simulink-models and, thus, on the binding time of variation points. For exam-
ple variability represented by Configurable Subsystems is controlled by a local
parameter of the Configurable Subsystem-block and already resolved on model
level, i.e. before code generation. Unselected subsystems are removed before code
generation. [5] refer to this as preprocessing of the model . The advantage of
this is that a concrete model variant can be expressed graphical using the normal
modeling language.

To provide later binding times, not only the chosen model elements play a
role, but also how the code generator transforms model elements to source code.
Kalix et. al. investigated in [10] the influence of Simulink and Stateflow model
elements on code generated by the Real Time Workshop Embedded Coder and
TargetLink, two widely used code generators for Simulink and Stateflow. Their
idea was to remove variability at code generation time by relying on the optimiza-
tions provided by the code generators. These optimizations effectively remove
irrelevant parts of the models from the generated source code. Their conclusion
was that at the present time the result was a collection of workarounds. [10].
The result heavily relies on the cleverness of the code generator. The following
paragraph investigates the capabilities of TargetLink available for representation
of earlier than run-time binding.

TargetLink, itself, offers an own set of blocks to be used inside Simulink
(referred to as TargetLink blocks). Most of these blocks have their equivalent
in Simulink, but extend the equivalent Simulink- blocks by additional proper-
ties and behavior regarding code generation and optimization. Analogous to
Simulink, TargetLink does not have explicit concepts for managing variability.

During code generation variability on model-level is mapped to data and con-
trol structures in the target source code language. In case of TargetLink the
language is C and generated constructs include e.g. #define/#ifdef and if-else

www.manaraa.com

Managing Flexibility: Modeling Binding-Times in Simulink 295

statements. The removal of variability, i.e. the binding, is done by assigning
values to variables. The declaration of these variables decides at which point in
time the variability is removed. TargetLink provides so called Variable Classes
for this purpose. Variable classes define the appearance of a variable in the
generated code. These variables represent outputs, states, and parameters of a
block. Accordingly, Variable Classes has to be specified in a TargetLink block
dialog, e.g. for the output of a Constant-block or the threshold of a Switch-block.
Each Variable Class has a set of properties, e.g. related to optimization, where
the variables of this class are stored, whether their values could be changed
during run-time or not and so forth. TargetLink provides a set of predefined
classes, but permits definition of new classes as well. Depending on the chosen
Variable Class of a model element, this model element is represented e.g. as a
constant or as a global variable in the generated source code. In combination
with the optimization of the code generator some blocks will not be present
at all in the generated code. Fig. 3 shows this for a Constant-block controlling
a Switch-block. In the context of variability the Constant-block represents the
control block and the Switch-block represents the resolution block.

Fig. 3. Signal Routing based on Constant- and Switch-block

Depending on the selection of the Variable Class for the TargetLink Constant-
block (in this case OPT_CAL or OPT_LOCAL), the Constant- and Switch-block are
present in the generated code or not. Fig. 4 shows the first case, Fig. 5 the later
case. Variable Classes with the prefix OPT are predefined classes which allow
the code generator to optimize the generated code, i.e., if possible to remove
variables out of the source code.

Setting the Variable Class to OPT_CAL tells the generator to declare the vari-
able Sa1_VAR_Control, generated out of the TargetLink Constant-Block block
VAR_Control, as const volatile. This makes the variable unchangeable for the
generated program but the value might be changed for instance by an interrupt
service routine, e.g. for calibration of certain data parameters in the vehicle. The

www.manaraa.com

296 D. Beuche and J. Weiland

Fig. 4. Extract from source code generated for a Switch-block using Variable Class
OPT CAL

Fig. 5. Extract from source code generated for a Switch-block using Variable Class
OPT LOCAL

code generator must assume for the generated code that the variable could be
changed during run-time. Since this change influences the signal routing of the
Switch-block, an if-else construct must be generated for the block.

However, if the OPT_LOCAL class is used, the code generator assumes, that the
variable will not be changeable by the program (as before), but also knows that
it will not be referenced from code not generated from this model. Thus, the code
generator can generate code, which uses the knowledge about the setting of the
Constant-parameter and uses the right input signal for the out-port (see Fig. 5).
There will be no change in the routing during the run-time of the program.

4.2 Specification of Binding Times for Variation Points in
Simulink-Models

The following concept is based on the assumption that variability not resolved
on model level is mapped to variables in the source code by the code generator.
These variables are either used as data assignments to adapt behavior of an
algorithm or to change the control flow in the application. In case of blocks
directly provided by TargetLink it is possible to set the Variable Class declaration
of blocks according to the desired binding time explicitly.

From Simulink blocks the code generator uses the context it sees at the time
of code generation to decide how to generate optimal code. These Simulink
blocks contain either additional TargetLink blocks (e.g. in Fig. 3 a TargetLink

www.manaraa.com

Managing Flexibility: Modeling Binding-Times in Simulink 297

Constant- and Switch-block), from which code is generated regarding the config-
uration of their associated Variable Classes, or they are explicitly controlled by
TargetLink blocks. This means that for every mechanism, which removes vari-
ability in Simulink, an appropriate TargetLink block is available, which can be
used to specify a binding time.

In order to allow modeling of binding times an additional mask parameter
VarBinding is introduced to complement the VarInfo parameter for all blocks
where binding times shall be specifiable. In the context of code generation, this
parameter is especially relevant for TargetLink blocks, which express variability
in the Simulink model. The content of the parameter VarBinding is represented
in form of a structure.

As shown in the example in Fig. 6, besides the binding time specification it-
self (here: CompileTime), some additional information is stored, e.g. the model
elements of the specific TargetLink block, which have Variable Classes assigned.
Another important information is whether the binding time might be changed
during model configuration (Alterable set to true). For blocks such as the
Configurable Subsystem-block which only provides binding at ModelConfigura-
tionTime, the value Alterable is set to false.

Fig. 6. Example for the data store in a VarBinding parameter

In order to map the available binding times (e.g. ModelConfigurationTime,
CompileTime, LoadTime, or RunTime) onto the expected code representation,
Variable Classes, representing the equivalent binding time, has to be defined and
configured. As part of the model configuration, the setting for binding time as
defined in the VarBinding parameter is mapped to the equivalent Variable Class.
Part of this process is also validation of the provided information against consis-
tency rules, e.g. that all Control blocks referencing the same VariantParameter
may only control resolution blocks which allow the selected binding time.

5 Application of the Binding Time Concept as Part of
the Simulink Configurator

The approach described in [6] permits systematic modeling, management and
configuration of variability in variant-rich Simulink models. The extension for
handling binding time described in this paper provides improved optimization for
resource usage and performance of code generated for configured model variants.
The original implementation of the Simulink Configurator based on MATLAB
7.1, TargetLink 2.1 and pure::variants 2.4 was extended to support the presented
binding time concepts. The Simulink Configurator consist of two main parts, a
set of blocks for modeling variability in Simulink, a set of dialogs integrated

www.manaraa.com

298 D. Beuche and J. Weiland

Fig. 7. Design of variable functions in Simulink

into Simulink and a configuration application including feature modeling sup-
port based on pure::variants. Fig. 7 shows the basic elements of this tool chain
including the support for binding time specification. The workflow is as follows:
The model developer selects variant blocks from the library (Fig 7. upper left
corner) and inserts those blocks into a Simulink model (Fig 7. lower left corner).
These blocks are Simulink- and TargetLink blocks with the additional prop-
erty and behavior for modeling variability. Mainly, these blocks contain the two
mask parameters VarInfo and VarBinding, with their associated information.
Afterwards the model developer links the variant blocks to variation points.
The definition of new variation points is done using a variant block dialog inside
Simulink (Fig 7. lower right corner). Here the binding time support is just a field
allowing the specification of a default binding time. The permitted values are Of-
fline (corresponding to CompileTime), StartUp and Online (aka Runtime). The
integration of binding time concepts into the existing Simulink Configurator tool
chain was straightforward, since it basically links already existing functionalities
together.

www.manaraa.com

Managing Flexibility: Modeling Binding-Times in Simulink 299

The pure::variants based configuration application reads the information
stored in Simulink (Fig 7. upper right corner) to permit the linkage of these vari-
ation points to features and to describe dependencies between variation points.
The model configuration including the specification of variant specific binding
times for variation points itself is done in this application. The validity of the
selected feature combination is checked and mapped to the corresponding set-
ting for VariantParameters in Simulink and applied to the Simulink model in
real-time.

6 Summary

The presented concept for binding time specification extends the concepts for for-
mal description, and systematic modeling, and configuration of variant rich sys-
tems based on Simulink. The implementation of these concepts in the Simulink
Configurator is based on MATLAB, TargetLink and pure::variants functionality.
The Simulink- configurator proved to work on real-world problems, since the tool
chain is being used in a project for production code development for Mercedes
passenger cars.

With the addition of binding time support the Simulink-configurator is able to
extend the reach of model reuse beyond individual project. The easily changeable
binding time permits flexible configurations for developing and testing of systems
based on function-rich models, the scaling down to individual variant instances,
and for production code, meeting the resource constraints of final product hard-
ware. While the implementation of the binding time concept in its current form
is based on a specific code generator (TargetLink), on variability level it can be
ported to other code generators as well since most of the information is stored in
an abstract form only and later mapped internal to the concrete mechanism pro-
vided by TargetLink. With a standardization of variability information within
Simulink, applicable to all blocks (not just the ones from one code generator),
it would be possible to flexibly exchange between code generators depending
on the use case (e.g. when generating for different target systems or interface
standards like AUTOSAR). This is one of the benefits of raising the abstraction
level for variability modeling from a rather informal level to a systematic and
formal level providing clear separation of concerns.

There are also open issues left. While code generators provide the necessary
functions to simulate a binding time concept it would be a much more reliable
approach if code generators would include a direct and simple way to control
the code generation in this respect. Another issue for further research is the
efficient mapping of binding times to appropriate code patterns, which provide
traceability and optimal performance.

References

1. AUTOSAR (2009), http://www.autosar.org
2. Beuche, D.: Composition and Construction of Embedded Software Families. Dis-

sertation, Universität Magdeburg (2003)

http://www.autosar.org

www.manaraa.com

300 D. Beuche and J. Weiland

3. Bayer, J., Forster, T., Kiebusch, S., Lehner, T., Ocampo, A., Weiland, J.:
Feature- und Entscheidungsmodell-basierte Varianteninstanziierung im PESOA-
Prozess. (engl.: Feature- and Decision-Model-based Variant Instantiation within
the PESOA-process). PESOA-Report Nr. 21/2005 (2005)

4. Czarnecki, K., Eisenecker, U.W.: Generative Programming– Methods, Tools, and
Applications. Addison-Wesley, Reading (2000)

5. Creutzburg, U., Kalix, E.: Process Integration of Model-Based Design and
Production-Code Generation in the Multi-User / Multi-Project Development En-
vironment at Continental Teves– Part 2. In: Proceedings of the Int. Automotive
Conference (2004)

6. Dziobek, C., Loew, J., Przystas, W., Weiland, J.: Von Vielfalt und Variabilität –
Hand-habung von Funktionsvarianten in Simulink-Modellen. (engl.: Model Diver-
sity and Variability - Handling of Functional Variants in Simulink-Models). Elek-
tronik automotive (February 2008)

7. Fritsch, C., Lehn, A., Strohm, T.: Evaluating Variability Implementation Mecha-
nisms. In: Proceedings of the 2nd Int. Workshop on Product Line Engineering –
The Early Steps (PLEES 2002), Seattle, USA (2002)

8. Geyer, L.: Variabilitätsmanagement in Produktfamilien (engl.: Variability Manage-
ment in Product Families). Dissertation, Universität Kaiserslautern (2003)

9. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse– Architecture, Process, and
Organization for Business Success. Addison-Wesley, Reading (1997)

10. Kalix, E., Bunzel, S., Judaschke, U.: Variant Coding in Model-Based Design. In:
9th World Multiconference on Systemics, Cybernetics, and Informatics (WMSCI),
Orlando, USA (2005)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Nowak, W.E., Peterson, A.S.: Feature Ori-
ented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, Carnegie Mellon University, Pittsburgh, PA (1990)

12. Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of Feature Modeling
for Product Line Software Engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS,
vol. 2319, p. 62. Springer, Heidelberg (2002)

13. pure-systems, pure:variants Eclipse Plugin User Guide (2008)
14. Schäuffele, J., Zurawka, T.: Automotive Software Engineering – Grundlagen,

Prozesse, Methoden und Werkzeuge (engl.: Automotive Software Engineering –
Foundations, Processes, Methods, and Tools) Vieweg, Wiesbaden (July 2003)

15. dSpace GmbH: TargetLink Advanced Practices Guide – for TargetLink 2.2. dSpace,
Paderborn (2006)

www.manaraa.com

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 301–312, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Experiences of Developing a Network Modeling Tool
Using the Eclipse Environment

Andy Evans1, Miguel A. Fernández2, and Parastoo Mohagheghi3

1 Xactium Ltd. UK, Sheffield - UK
andy.evans@xactium.com

2 Telefónica Research & Development – Valladolid, Spain
mafg@tid.es

3 SINTEF, P.O. Box 124- Blindern, N-0314 Oslo, Norway
parastoo.mohagheghi@sintef.no

Abstract. Domain-specific modeling solutions have been promoted for some
time in order to improve the productivity of software developers by providing
them with modeling environments that are easier to learn, integrate best solu-
tions and provide the possibility to automate software development by generat-
ing code from models. This paper presents experiences of developing a network
modeling tool in Telefónica using Eclipse GMF. A metamodel based on
Common Information Model was used in this development. While we experi-
enced benefits in terms of better usability by domain experts, we also faced
challenges such as the high level of expertise required to develop a good
enough language and tool, the shortcomings of the tools in providing support
for modeling at different abstraction levels, and the difficulties in updating the
modeling tool with changes in the metamodel. These challenges must be over-
come before the tool can be a part of our development environment.

Keywords: domain-specific modeling, language design, metamodeling, Eclipse.

1 Introduction

Throughout the history of software, developers have always sought to increase their
productivity by improving abstraction. Domain-Specific Modeling (DSM) raises the
abstraction level by offering the possibility to specify solutions directly using problem
domain concepts [8]. Other artifacts are then generated from these high-level specifi-
cations. A modeling environment that fits to the concepts of the domain and the prob-
lem in hand is expected to be easier to be used by domain experts. A domain here is
an area of interest; either a horizontal functional domain (such as user interface or
persistency) or a vertical business domain such as telecommunications or retail. In
this paper, network modeling in telecommunication is the domain of interest.

DSML tools are visual modeling tools based on some Domain-Specific Modeling
Language (DMSL). DSMLs are promoted by some as the next big thing after General-
Purpose Languages (GPLs) and there are reports of successful application in industry
such as in Motorola [2] and examples presented in [8]. However, reports of experience
are still few and far between, as a review of literature on industry experience with

www.manaraa.com

302 A. Evans, M.A. Fernández, and P. Mohagheghi

Model-Driven Engineering (MDE) has confirmed [1]. There may be several reasons
for that; firstly the development of DSM solutions does not have a long history; and
secondly DSM solutions are valuable assets that give companies competitive advan-
tage so experience reports may be kept private and not published.

The European research project MODELPLEX (MODELing solution for comPLEX
software systems)1 aims at evolving MDE tools and technologies to be applicable for
developing complex software systems and evaluating them in the context of four, very
different, industrial scenarios. As an industry case provider in MODELPLEX, Tele-
fónica has participated in specifying requirements regarding tools and technologies,
customizing the solutions, evaluating them and providing feedback to both tool pro-
viders and industry interested in applying these solutions. One of the areas of research
has been the development of a DSML for network modeling based on the CIM
(Common Information Model) metamodel defined by the DMTF [5].

Taking into account the high cost of developing a DSML, a company needs to
make a serious evaluation of the Return On Investment (ROI), balancing the expected
benefits and productivity improvement against the cost of development and future
maintenance of the tools before moving to a new development environment. The
purpose of this paper is to report on our experiences of developing a DSML based
around the aforementioned Telefónica case using the widely used Eclipse GMF tool
development framework. We also identify useful criteria for evaluating the resulting
DSML tool which might be part of a ROI analysis when a solution is developed.

The remainder of the paper is organized as follows. Requirements of the DSML
and the criteria for evaluating it are presented in Section 2. Section 3 presents the
steps of the development while Sections 4 and 5 present our experience with the envi-
ronment used for developing the DSM tool and the DSM tool itself. Section 6 pre-
sents the challenges for developing a DSML based on our experience (Xactium has
long experience with language-driven development2). Finally Section 7 presents a
conclusion and discussion of future work.

2 Requirements of DSML and Criteria for Evaluation

2.1 Requirements

As mentioned in the introduction, the purpose of this report is to discuss the develop-
ment of a specific DSML for network service modeling. The key driver for this DSML
is the wide recognition that it is becoming increasingly difficult to manage the com-
plexity and size of modern telecom networks [4]. To address these challenges, it was
proposed that a DSML be developed to enable the modeling of complex networks
delivering services to private subscribers via a range of different devices. This ap-
proach would provide Telefónica with a modeling language to capture the key features
of these networks and services at a level of abstraction that enables the management of
complex networks more efficient and more manageable. Some specific areas of re-
quirement were identified as follows.

1 http://www.modelplex-ist.org/
2 The idea of language-driven development is providing developers with an integrated collec-

tion of semantically rich languages that specifically target their development needs.

www.manaraa.com

 Experiences of Developing a Network Modeling Tool 303

By Telefónica’s requirement, the Network DSML had to include, but was not nec-
essarily limited to, the following concepts; a) network topology (e.g., sub-network
addressing); b) device properties (e.g., interfaces, firmware version, etc.); and c) types
of network traffic and service features (e.g., protocols, port ranges, QoS, etc.) In addi-
tion, a key requirement of the Network DSML tool was to allow modeling at different
levels of abstraction, at least the following: a) device, showing internal device details,
e.g. network interfaces; b) network topology, showing how devices connect to each
other; and c) service, showing higher-level interactions and roles of whole sub-
networks in the deployment of a service.

From these models, a wide range of artifacts could be generated, the first ones on
the list being device configuration specifications to be fed, in the appropriate format,
to Telefónica’s OSS subsystems in charge of device configuration and monitoring.

Rather than develop these concepts from scratch, it was proposed by Telefónica
that the Common Information Model (CIM) [5] would provide a useful starting point.
This model provides many concepts useful to the modeling of networks and devices.
A significant part of this model was identified as being relevant to the requirements of
the project, and with some additional changes, this became the core model around
which the DSML was based. CIM was also relevant as it is the underlying model in
many COTS products dealing with management and instrumentation of network
equipment, some of which are part of current Telefónica’s OSS.

Finally, there were a number of generic features of the DSML tool, which were re-
quired in order to meet the needs of users of the tool. These included: a) a visual,
user-friendly interface; b) scalability – enabling thousands of model elements to be
managed; c) interoperability with other tools and standards; d) flexibility – enabling
the rapid adaptation of the tool to support new abstractions (preferably done by the
engineers themselves); and e) support for model validation and checking.

2.2 A Framework for Evaluating the DSML

Industrial participants in the MODELPLEX project have defined a set of research
questions for evaluating the solutions. There, Telefónica has stated that, “We expect
to develop a DSML that helps us create these models in a way that proves convenient
for business experts with no technical background in modeling”. The questions are:

“Can a telecommunication business expert model services by means of a
DSML? How valid are the models in terms of completeness and usefulness for
the generation of other artifacts?”

As part of the MODELPLEX project we have also performed a state of the art
analysis regarding evaluation of languages (in this case a DSML) and identified the
stakeholders and their points of interest, as depicted in Fig. 1:

• Language Engineers (LE) are those developing the language. They evaluate a lan-
guage based on whether the language features are easy to implement or whether it
is easy to develop compilers or generators.

• Language Users (LU) are personnel using the DSML for modeling, which are
interested in ease of use, increased productivity, etc.

www.manaraa.com

304 A. Evans, M.A. Fernández, and P. Mohagheghi

Language
(L)

Language
Engineers (LE)

Language
environment

/ tools (LENV)

Domain/
System (D)

Language
Users (LU)

Generated
Artifacts (GA)

Other
languages /

tools (O)

ease of implementing
language features /
generating compilers

ease of learning / generating
correct and understandable
artifacts /
understanding artifacts

debugger,
library,
standard,
UI

domain / system
appropriateness,
consistency,
orthogonality

formalism,
technical
appropriateness,
evolution,
scalability

quality and performance of
generated artifacts,
effort and time needed,

mappings,metamodels,
integration,
extensibility

Interoperability,
exchanging
artifacts

Language
(L)

Language
Engineers (LE)

Language
environment

/ tools (LENV)

Domain/
System (D)

Language
Users (LU)

Generated
Artifacts (GA)

Other
languages /

tools (O)

ease of implementing
language features /
generating compilers

ease of learning / generating
correct and understandable
artifacts /
understanding artifacts

debugger,
library,
standard,
UI

domain / system
appropriateness,
consistency,
orthogonality

formalism,
technical
appropriateness,
evolution,
scalability

quality and performance of
generated artifacts,
effort and time needed,

mappings,metamodels,
integration,
extensibility

Interoperability,
exchanging
artifacts

Fig. 1. Evaluating a language from multiple views

• Language Environment (LENV) is the tool (including editors and transformations)
which is developed around the DSML. There are requirements such as whether the
language is formal, evolvable or scalable. Besides, including debuggers and librar-
ies, being standards-based and compatible with other tools, and having a pleasant
User Interface (UI) all increase the value of the LENV.

• Domain/System (D) is the domain of interest. A language should be appropriate for
the domain, the concepts should be consistent, etc.

• Other languages / tools (O) cover requirements for interoperability, mappings
between languages, building future extensions, etc.

• Generated artifacts (GA) may have requirements regarding quality, performance,
and effort or time needed for generation.

While the framework shown in Fig. 1 is developed with languages in mind, in
MODELPLEX we also take advantage of an extended version of the Technology
Acceptance Model (TAM) for evaluating tools and technologies. The original TAM,
by Davies, is widely referenced [9] and used in information science research. It ex-
plains users’ intention to use a new system through two beliefs, perceived usefulness
and perceived ease of use. There are several extensions to TAM and we use the model
described in [11] for evaluation of the DSML (and the base DSL) as depicted in Fig. 2
where we have also inserted requirements identified in the previous section and the
stakeholders as defined above. We define these factors as:

• Perceived Usefulness (PU) is the degree to which a person believes that using a
particular method or tool will enhance their job performance.

• Perceived Ease of use (PE) refers to the degree to which a person believes that
using a particular method or tool would be free of effort.

www.manaraa.com

 Experiences of Developing a Network Modeling Tool 305

Perceived
Usefulness (PU)

Perceived
Ease of use (PE)

Perceived
Compatibility (PC)

Perceived
Maturity (PM)

MODELPLEX Infusion
(exploitation)

Current
Usage (CU)

intended
Future Use (FU)

Initial
Usage (IU)

Subjective
Norm (SM)

GA: efficient generation

D: suitable for complex
network management

LU: easy to use and learn

LU: levels of abstraction

LU: using CIM

O: compatible with other
tools in Telefónica
O: compatible with
standards

LE: flexibility and
adaptability

LU: scalability

Perceived
Usefulness (PU)

Perceived
Ease of use (PE)

Perceived
Compatibility (PC)

Perceived
Maturity (PM)

MODELPLEX Infusion
(exploitation)

Current
Usage (CU)

intended
Future Use (FU)

Initial
Usage (IU)

Subjective
Norm (SM)

GA: efficient generation

D: suitable for complex
network management

LU: easy to use and learn

LU: levels of abstraction

LU: using CIM

O: compatible with other
tools in Telefónica
O: compatible with
standards

LE: flexibility and
adaptability

LU: scalability

Fig. 2. The model used for evaluating DSM

• Perceived Compatibility (PC) is the degree to which an innovation is perceived as
being consistent with existing practices, standards and tools, and the past experi-
ence of potential adopters.

• Perceived tool Maturity (PM) is the degree to which tools are perceived as mature
and suitable for the tasks in hand.

• Subjective Norm (SM) is the degree to which software developers think that others
who are important to them think that they should use that particular method or tool.

For evaluating each factor, a set of questions is defined from the stakeholders’
viewpoint and their interest in the developed language in the context of the company.
These questions are listed in Section 5 together with the answers. Originally, the
evaluation was intended as a questionnaire. However, we performed a qualitative
analysis by three engineers form the MODELPLEX research team at Telefónica in-
stead, since the DSML was not used by a significant number of developers then.

3 Design and Implementation of the DSM

For this project we used the Eclipse Graphical Modeling Framework (GMF) [6] plug-
in to develop the DSML. Our reasons for choosing GMF were its relative popularity
and maturity and the fact that it is open source and based on Eclipse (one of the key
platforms mandated by MODELPLEX by virtue of its interoperability and openness).
GMF provides the ability to develop a working tool for the graphical representation of
data, based entirely on an EMF (Eclipse Modeling Framework) [7] model and com-
plying to all the relationships and constraints specified in that model.

www.manaraa.com

306 A. Evans, M.A. Fernández, and P. Mohagheghi

Fig. 3. Relations between the developed DSML editor and the Eclipse components

The process of creating a graphical model editor in GMF requires the use of other
Eclipse components such as the Eclipse Graphical Editing Framework (GEF). So
when trying to understand the relationship between GMF and EMF it is also impor-
tant to take into account their relationship to the Eclipse Platform, on which they are
built. Fig. 3 is a representation of that relationship. As we can see, a GMF-based
DSML graphical editor depends on the GMF runtime component but also makes
direct use of EMF, GEF and the Eclipse platform.

Fig. 4. Steps in creating the DSML editor

The first step in the development of this tool was the creation of an EMF model (or
metamodel). From this model specification, a set of Java classes are produced which
can later be used as the foundation for our tool. The CIM metamodel was initially
transformed into Ecore by Xactium and then modified by Telefónica to the needs of
their specific domain. A significant challenge of this stage of development is the size

www.manaraa.com

 Experiences of Developing a Network Modeling Tool 307

of the CIM metamodel which contains over 1500 concepts, hence a reduced subset
was used in the first implementations, consisting of more than 200 concepts.

The next step was to take our (CIM) metamodel and begin the development of the
Eclipse graphical modeling editor. The basic components of the GMF model we de-
veloped are depicted in Fig. 4 and described below:

1. The domain model defines the non-graphical information managed by the editor
(this can be generated directly from our EMF model).

2. The graphical definition model contains information related to the graphical ele-
ments that will appear in a GEF-based runtime, but has no direct connection to
the domain models for which they provide representation and editing.

3. An optional tooling definition model is used to design the palette and other pe-
riphery (menus, toolbars, etc).

4. The diagram mapping model defines mappings/relationships between domain
model elements and graphical elements.

5. Once the appropriate mappings are defined, GMF can produce a generator model
from which the code could be generated.

This process was repeated over a number of iterations, to produce a fully working
tool. An example of the tool in action is shown in Fig. 5.

Fig. 5. A fragment of a model in the network DSML tool

4 Experiences with GMF/EMF

One of the most challenging aspects of this DSML was the large number of modeling
abstractions and relationships in the CIM model. As a result, it was decided to develop

www.manaraa.com

308 A. Evans, M.A. Fernández, and P. Mohagheghi

the tool as a graph editor, with each node in the graph representing a class instance and
each edge in the graph representing a relationship between classes. As an example, a
device would be represented as a node, labeled “Device”, and its relationships (both
direct and inherited from parent classes) as edges.

When developing the mapping model it was apparent that there was an issue in
managing containment relationships. In GMF, containment relationships by default
map to containment structures in the diagram model. However, given the large num-
ber of containment relationships, it was not practical to make special cases for each
diagram mapping as many of these relationships would need to be represented in
different ways, e.g. as a sub-node or sub-diagram. Moreover, for many concepts, it
did not make sense to treat their diagram representation as a container in any case.

To address this issue we adopted a GMF development technique called phantom
(or shadow) nodes. These are simply nodes without their containment feature set. The
use of this technique was necessary but we knew this would cause problems at a later
stage since, when using it, the top-level nodes should still have a containment rela-
tionship to the canvas and this was not acceptable in our model. This issue was solved
by making changes to the generated code, which involved editing the create function
for each of the nodes on the diagram to give them a containment relationship to the
canvas when they are drawn on the diagram. Due to the use of shadow nodes, all
nodes could be given a containment relationship of a different type by the user.

Another challenge was that of making the tool as usable as possible, which in-
volved changing the tooling definition. Again, the large number of abstractions was
an issue which had to be addressed as simply as possible. To do this, we grouped
classes into groups and then also grouped diagram components to a tool based on
their types; this reduced the number of palette elements and increased usability sig-
nificantly. We made further changes to the tooling palette as well by changing the
Icons in the .edit file by grouping tools with icons.

When using the editor we discovered that the automatically generated popup
menus and connection handles were more of a hindrance than help, due to the com-
plexity of the model. The popup menu was overly large due to the number of creation
tools for each component in the diagram, also connection handles produced an incor-
rect output due to the scope of the model that the tool is built on. To solve this issue
we removed the popup menus and connection handles by adding some code to the
diagramEditPart of each diagram element (including the nodes and the canvas).

One of the key requirements of the DSML tool was that it provided sufficient
flexibility to enable rapid changes to the metamodel, thus enabling the tool to adapt to
changing modeling requirements. Unfortunately, this was not supported well by
GMF. Even small changes to the model require repeating the code generation steps
and there was always significant risk that errors would creep into the generated code.
Furthermore, any changes required someone with strong technical expertise in GMF.

Another important aspect missing from GMF is the provision of a facility to encap-
sulate levels of abstraction through the use of components or product line concepts.
For example, in the case of a ‘router’ concept, it could be thought of as being com-
posed of a collection of more primitive elements. Ideally, the tool needs to provide an
easy to use mechanism for creating abstractions as patterns of more fundamental
elements. Again, the facility should not be reliant on the re-generation of the tool, but
should provide the ability to create new abstractions dynamically.

www.manaraa.com

 Experiences of Developing a Network Modeling Tool 309

5 User Experience with the DSML Tool

Here we present the opinion of the users of the tool to a set of questions related to the
TAM evaluation criteria presented in Section 2.2.

Table 1. Results of the DSML tool evaluation

Perceived Usefulness
1. Is the CIM metamodel suit-
able for modeling network
management in Telefónica?

Yes, they are suitable for this purpose but need constant
revision and extension to keep up with the evolution of the
domain and the standard of reference (CIM).

2. Do the DSML and the arti-
fact generation capabilities
affect quality, performance and
productivity of the work?

Yes, the DSML has the potential to improve productivity
and quality but additional work and training, as well as other
tools like model transformation languages, etc., are needed
to achieve those objectives.

Perceived Ease of use
1. Is the DSML tool easy to
use? Is the UI acceptable?

Not enough, largely due to the sheer size of the metamodel
which resulted in having to add a large number of
connection and node tools.

2. How can the abstraction
layers improve models and
their understanding?

Abstraction layers are necessary in cases such as this and
can improve greatly the understanding and usefulness of the
models. The problem is that abstraction layers are not
supported in GMF and, even with the addition of a model
composition framework, the level of integration achieved
was not sufficient.

Perceived Compatibility
1. Is the DSML compatible
with the standards?

Yes, using CIM provides such compatibility but brings
problems due to its size.

2. Is the DSML compatible
with other tools?

Many tools used in the network management domain are
based on CIM, but as the DSML transforms the CIM
metamodel into EMF, this leads to compatibility issues with
CIM-based off-the-shelf products that need to be resolved.

Perceived Maturity
1. Is the solution scalable? GMF does not scale well because of some shortcomings in

the implementation that have been already discussed.
2. Is the solution flexible? The same applies to flexibility. A more dynamic, meta-

model-driven tool generation approach is needed.
Subjective Norm
1. How would others judge our
use of the DSML? Do we think
that it improves our reputation
and image as innovative?

Yes, the image and reputation of innovation can be greatly
improved by the use of tools and approaches such as the one
presented herein.

6 Challenges for DSML Technologies

We recognized two main challenges (or shall we say obstacles) during developing the
DSML solutions: a) developing a DSML in an environment such as Eclipse requires
high language expertise and tool expertise, which make developing DSMLs out of

www.manaraa.com

310 A. Evans, M.A. Fernández, and P. Mohagheghi

reach of domain experts with some IT expertise; and b) the resulting DSML is not
changeable or flexible enough. We describe these in more detail below with outline of
solutions.

a) More user-centric development environment

Understand that DSMLs are a business solution, not a technical one. While the com-
munity of users of Eclipse and GMF is growing, and there are many examples of
DSML tools that have been developed using the technology, there is too much em-
phasis on GMF as a technical solution rather than a business solution. This is widely
reflected by the large number of academic conferences on the subject of DSMLs, the
relative lack of involvement of business users in the development and use of DSMLs,
and the fact that the development of DSL technologies is largely being driven by
programming experts and IT groups. Until this is addressed, DSML tools, certainly in
the case of those built using Eclipse, will not achieve critical mass for business users,
and will largely remain the domain of academic interest and IT research departments.
Such lack of critical mass poses a significant issue to large companies like Telefónica,
who have to take into account the costs of supporting and maintaining non-
mainstream technologies in the long term.

Enable DSMLs to be developed by end users. A problem encountered with GMF
was the significant technical expertise required to develop DSML tools, even simple
ones. This is a significant challenge for users who are not technically minded as, in
practice, they will have the best understanding of their domain. It seems particularly
strange that although a key objective of DSMLs is to provide a more targeted and
flexible domain solution, the ability to create DSMLs is only accessible to experi-
enced programmers.

Address abstraction zoom-in and zoom-out, to help simplifying the models and al-
low reuse. During this project we have identified a specific example of flexibility
which is an important requirement for modeling (certainly in the telecom domain).
Because many telecom systems are built up of components, which are themselves
composed of more granular components, there is a requirement to be able to create
pre-defined combinations of components which can be combined together in new
ways. While it is possible to create component models in UML, there is an advantage
of being able to generically combine different DSML concepts into reusable compo-
nents. Whilst this capability is not available ‘out of the box’ with GMF and other
DSML tools, we are examining how the Eclipse Reuseware [10] initiative might ad-
dress this.

Support multi-user, multi-tenancy DSML tools. Once a DSML has been developed
and is in use, a significant challenge is to scale its use to multiple users. While models
created in Eclipse can be exported to others users, there is no simple mechanism for
ensuring changes to models by one user are kept in sync with changes made by other
users. Data can soon become out of step, and the effort to resolve changes becomes
prohibitive for successful commercial use. In other areas of business software, for
example, database applications, such issues have been recognized and addressed
through multi-user support, while multi-tenancy solutions address critical issues of
managing and upgrading data when underlying changes to the database are made.
This challenge is not specific to DSMLs but to modeling tools in general.

www.manaraa.com

 Experiences of Developing a Network Modeling Tool 311

b) Need for flexible solutions:

Enable non-programming customization and adaptability. As identified above, a
problem encountered in the development and use of the CIM DSML tool was the
problem of adapting it to new requirements. These adaptations were primarily around
the changes to the underlying metamodel, including changes to properties, relation-
ships and the addition of new domain concepts. However, they could also include
changes to diagrammatical representations, and also hiding and showing of user rele-
vant information, for example fields. GMF completely failed in this regard due to the
fact that any changes (whether simple or complex) required re-generation of the code.

Support dynamic management of data and metadata. Another key requirement for
adaptability is the ability to accommodate changes to the metamodel without making
existing model data redundant. While this was not tested fully, in a number of cases,
models became corrupted due to changes in the DSML tool and could not be reused
without significant modification of the underlying XML file. The alternative, of creat-
ing a model-to-model mapping to transform the data would again necessitate signifi-
cant programming expertise. We will investigate other solutions to this problem in the
MODELPLEX project but we fear it is a complex issue to solve.

7 Conclusions and Future Work

The purpose of this paper is to report on our experiences with a widely used, open
source framework for building DSML tools- the Eclipse GMF framework. While we
do not wish to claim that the challenges identified in its use are applicable to all
DSML technologies, we do believe the challenges we have identified are an important
consideration when evaluating and developing DSML technologies (particularly when
assessing ROI). One particular issue with regard to GMF, was the need for a more
user-centric tool development process that would enable end users and domain ex-
perts to participate more fully with the tool design process. A second issue is the need
to encapsulate levels of abstraction, again provided in a user friendly way. We view
both of these challenges as an essential requirement for the wider commercial uptake
of DSML technologies. Whilst there may be existing technologies available which
overcome these challenges, we believe our focus on GMF is important as it is one of
the leading technologies in the marketplace.

We also believe that a more flexible approach to DSML development is required,
which would support the dynamic creation of DSMLs as opposed to the generative
approach taken by GMF.

Solving the above issues would enable DSML tools to be created by domain ex-
perts rather than software developers, thus providing a more interactive and user-
centric approach to DSML development. Some key features of this approach must be;
a) the use of metadata to configure and customize the resulting tools on the fly; b) a
user friendly interface for customizing the editors – probably via a DSML tool; c) the
ability to easily upgrade model data without the need for complex transformations; d)
the ability to easily customize the resulting tool, for example, in terms of look and
feel, icons, etc; and finally e) the ability to represent patterns of concepts of higher
level abstractions, which can themselves be reused in the tool.

www.manaraa.com

312 A. Evans, M.A. Fernández, and P. Mohagheghi

We are at the moment exploring ways of adapting the existing GMF technologies
to provide a DSML tool generation engine. This would provide a way of dynamically
creating tools by loading the tool model into the engine (rather than generating the
code). Another contribution of the work has been developing a framework for evalu-
ating DSML solutions which will be reused in future work. We hope to report on all
this as part of the MODELPLEX project.

Acknowledgments. This work has been done in the MODELPLEX project (IST-FP6-
2006 Contract No. 34081), co-funded by the European Commission as part of the 6th
Framework Program.

References

1. Mohagheghi, P., Dehlen, V.: Where is the Proof? A Review of Experiences from Applying
MDE in Industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS,
vol. 5095, pp. 432–443. Springer, Heidelberg (2008)

2. Baker, P., Loh, P.S., Weil, F.: Model-Driven Engineering in a Large Industrial Context -
Motorola Case Study. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS,
vol. 3713, pp. 476–491. Springer, Heidelberg (2005)

3. Mohagheghi, P., Fernandez, M., Martell, J.A., Fritzsche, M., Gilani, W.: MDE Adoption in
Industry: Challenges and Success Criteria. In: ChaMDE Workshop at MoDELS 2008, To
be publised in the Proc. of Workshops at MoDELS 2008 (2008),

 ftp://ftp.umh.ac.be/pub/ftp_infofs/2008/ChaMDE-report.pdf
4. Wong, D., Ting, C., Yeh, C.: From Network Management to Service Management – A

Challenge to Telecom Service Providers. In: Proc. 2nd International Conference on Inno-
vative Computing, Information and Control (ICICIC 2007) (2007)

5. DMTF’s Common Information Model Website,
 http://www.dmtf.org/standards/cim/

6. Eclipse Graphical Modeling Framework (GMF), http://www.eclipse.org/gmf/
7. Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/
8. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling- Enabling Full Code Generation.

IEEE Computer Society Publications, Los Alamitos (2008)
9. Davis, F.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Informa-

tion Technology. MIS Quarterly 13(3), 318–339
10. Reuseware Composition Framework, http://www.reuseware.org/
11. Dybå, T., Moe, N.B., Mikkelsen, E.M.: An Empirical Investigation on Factors Affecting

Software Development Acceptance and Utilization of Electronic Process Guides. In: Proc.
10th International Symposium on Software Metrics (Metrics 2004), pp. 220–231 (2004)

www.manaraa.com

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 313–324, 2009.
© Springer-Verlag Berlin Heidelberg 2009

MBT4Chor: A Model-Based Testing Approach for
Service Choreographies

Alin Stefanescu1, Sebastian Wieczorek1, and Andrei Kirshin2

1 SAP Research, CEC Darmstadt, Bleichstr. 8, 64283 Darmstadt, Germany
{alin.stefanescu,sebastian.wieczorek}@sap.com

2 IBM Haifa Research Lab, Haifa University, Mount Carmel, 31905 Haifa, Israel
kirshin@il.ibm.com

Abstract. Service choreographies describe the global communication protocols
between services and testing these choreographies is an important task in the
context of service-oriented architectures (SOA). Formal modeling of service
choreographies makes a model-based testing (MBT) approach feasible. In this
paper we present an MBT approach for SOA integration testing based on SAP
proprietary choreography models called Message Choreography Models
(MCM). In our approach, MCMs are translated into executable UML models us-
ing Java as action language. These UML models are used by a UML model exe-
cution engine developed by IBM for test generation and model debugging. We
describe the achievements and challenges of our approach based on first experi-
mental evaluation conducted at SAP.

Keywords: Choreography Modeling, SOA, Service Integration, Model-Based
Testing, Model Transformation, Domain Specific Language.

1 Introduction

Enterprise Resource Planning (ERP) software [15] supports business processes for
whole companies, with SAP being a leading provider of ERP software. ERP soft-
ware integrates many organizational parts and functions into one logical software
system, posing unique challenges to software development and also testing [12,21].
Recently, service-oriented architecture (SOA) has come to be regarded as the next
evolutionary step in coping with the software complexity of ERP systems where
monolithic approaches are no longer applicable [23,16]. SAP simplifies the SOA
adoption by delivering SOA-enabled software, SOA methodology guidelines, and
professional services. Using the SAP approach, independent business components
exhibit enterprise services that can be composed individually to implement custom-
ized business processes. For service integration to occur on a higher level of abstrac-
tion than component development, complex service interactions need to be modeled:
hence, choreography languages have emerged. According to the W3C Web Service
Glossary [17], “a choreography defines the sequence and conditions under which
multiple cooperating independent agents exchange messages in order to perform a

www.manaraa.com

314 A. Stefanescu, S. Wieczorek, and A. Kirshin

task to achieve a goal state”. Thus, a choreography model describes the interaction
protocol from the perspective of a global observer between a set of loosely coupled
components communicating over message channels.

Choreography models play an important role in SOA development and can provide
a basis for ensuring quality at several levels. In previous work [19], we defined precise
requirements on choreography modeling languages that support the three software
quality related use cases of design, verification, and testing. However, we observed
that state-of-the-art choreography languages such as WS-CDL [13], Let’s Dance [24],
and BPMN [3] do not fulfill all these requirements simultaneously, mainly due to the
high abstraction level, imprecise semantics, lack of a formal foundation, assumption of
ideal channels, lack of termination symbols, etc. Recently SAP Research developed a
proprietary choreography modeling language called Message Choreography Modeling
(MCM) that satisfies the requirements from [19] (e.g., graphical state-based representa-
tion, explicit concurrency, detailed message types, local viewpoints, determinism, a
distinction between global and local constraints) and implemented an MCM editor
with verification and testing plugins.

In this paper, we describe a model-based testing (MBT) approach called MBT4Chor
for service integration based on MCM. The goal is to generate integration tests for
message-based communication between business components. We achieve this with
two complementary means: (a) by directly implementing graph-coverage algorithms
for the choreography models and (b) by a model transformation to executable UML
where we can use an IBM research prototype tool for generating random tests.

The contributions of the paper are the following:

1. to present our experience of using MBT on a domain-specific language (DSL),
2. to sketch a transformation from our DSL (MCM) to a general purpose one

(UML),
3. to describe a new UML based test generation tool that relies on the UML exe-

cution engine presented in [5], and
4. to share the lessons learned and challenges of an MBT approach in an indus-

trial setting of SOA applications.

The paper is structured as follows. Section 2 provides an overview of MCM. Sec-
tion 3 describes the proposed MBT approach and Sections 4, 5, and 6 present the
translation from MCM to UML, the test generation tool for UML and the test con-
cretization at SAP. Sections 7 and 8 provide related work and future activities.

2 Choreography Modeling

The SAP approach to SOA and SAP’s internal software development lifecycle in-
cludes a rich modeling environment. While external SOA artifacts are based on web
service open standards like SOAP, WSDL, and WS-Reliability, internal development
is based on various proprietary models for business objects, service components,
component interaction and integration scenarios. Recently, SAP Research developed a
proprietary domain-specific language for modeling service choreographies called
Message Choreography Modeling (MCM) together with a customized Eclipse-based
modeling environment.

www.manaraa.com

 MBT4Chor: A Model-Based Testing Approach for Service Choreographies 315

MCM complements the structural information of the communicating components
(e.g., service interface descriptions and message types) with information on the mes-
sage exchange among them. MCM consist of different model types each defining
different aspects of service composition. The remainder of this section informally
describes these model types and their relations are informally described.

2.1 Global Choreography Model

The global choreography model (GCM) specifies a high-level view of the conversa-
tion between service components. Its purpose is to define every allowed sequence of
message exchanges. Similar to an extended finite state machine (EFSM), a GCM
consists of transitions with guards and side effects over different datatypes, leading to
a possibly infinite state space. In the GCM, transitions are fired only when a global
observer is able to detect that a message was consumed by the receiving component
(i.e., the message left the communication channel). In contrast to common choreogra-
phy languages that have their semantics based on send events, we noticed that the
receive semantics of GCM provides a better testing approach because message racing
can also be captured.

The left side of Figure 1 shows an example of a GCM for two components, a seller
and a buyer. The buyer is able to send the messages Request and Cancel that are then
received by the seller, while the seller can send the message Response, which is re-
ceived by the buyer. For simplicity, in this example no guards, side effects or concur-
rent states are used, although such features are present in the MCM metamodel.

One of the requirements for GCMs is determinism. In the example in Figure 1 this
is achieved already because in each state the outgoing transitions have different mes-
sages. In scenarios where this is not the case, determinism has to be enforced by as-
signing mutually exclusive guards.

 Seller receives Buyer receives Sending message Receiving message

Fig. 1. Global Choreography Model (GCM) on the left and the two corresponding Local
Partner Models (LPMs)

Another requirement of GCMs is the marking of initial and target states in which
the communication reaches an agreed goal of conversation. The test generators must
generate test sequences starting in an initial state and ending in a target state. Note

www.manaraa.com

316 A. Stefanescu, S. Wieczorek, and A. Kirshin

that in MCM, the target states allow outgoing transition because of business scenarios
where one of the communicating partners is allowed to restart a negotiation process
infinitely often. This is in contrast to the final states of the UML state machines. In
the GCM of Figure 1 the states Committed, Undefined, and Cancelled are target
states, while the state Start is marked as an initial state.

2.2 Local Partner Model

Local Partner Models (LPMs) specify the communication-relevant behavior for ex-
actly one participating service component. Due to the design process of MCM, each
LPM is a structural copy of the GCM with extra constraints on some of the local tran-
sitions, usually leading to the affected transitions being removed. For exactly two
involved partners, the global message receive events are copied to the receiving com-
ponents, while the receive events of other partners are transformed into send events.

Figure 1 shows one possible set of LPMs for the GCM. Compliant to the global
specification GCM, the LPM of the buyer consists of send events for the Request and
Cancel messages and receive events for the Response message (and vice versa for the
seller).

As mentioned, some of the events copied from the GCM have been removed in
each of the LPMs. Note that despite these local reductions, in our example each
global transition can still be reached, that is, all message sequences possible in the
GCM can be simulated with local sequences of the sends and receives in the LPMs.
These send and receive events take into account the communication channel proper-
ties (see below).

2.3 Channel Model

The channel model describes the characteristics of the communication channel on
which messages are exchanged between the service components. It determines, for
example, whether messages sent by one component preserve their order during trans-
mission. For the channel definition, MCM uses the Web Service Reliable Messaging
(WS-RM) standard [18]. In the example in Figure 1, we assume a reliable channel on
which each sent message is received exactly once, but which does not necessarily
preserve the message order. Therefore, the buyer may send the Cancel message only
after sending Request, while the seller has to be prepared to receive either Request or
Cancel first. Because the GCM describes the order of receive events, it also reflects
the possible switching of the Request and Cancel messages on the channel.

3 Overview of MBT4Chor

In addition to a holistic software design purpose, the development of MCM was
driven by the requirements of automatic model verification and test generation. This
section gives an overview about the utilization of MCM for testing.

The core idea of model-based testing (MBT) is to use formal specifications for test
generation. This implies that tests can only be as precise as the modeled content they
use. By design, MCM offers the necessary information to drive the generation of test
suites covering the specified interaction protocol. The generated test suites have to be

www.manaraa.com

 MBT4Chor: A Model-Based Testing Approach for Service Choreographies 317

supplemented with additional information, because even though the local behavior is
modeled in the LPMs, triggers for the local message sending events are not specified.
This information cannot be easily modeled as it is deeply rooted in the internal behav-
ior of the components. Note that MCM is not suited for the derivation of component
tests because apart from the missing triggers mentioned, the behavior modeled in the
LPMs focuses on communication only, leaving out internal steps that may happen in
between the communication events.

However, using MBT for service integration promises to reduce the manual effort
by automatically generating minimal sets of test cases for desired coverage of the
choreography model. In [20] we discussed different coverage criteria that can be used
to drive service integration testing and how to choose them accordingly, depending on
effort and fault assumptions. Among the different possible coverage criteria, we de-
cided to start with the transition coverage of the GCM, which requires the following
MCM-specific three-step approach for test generation:

– Step 1: A test generator generates a set of globally observable message sequences
that cover each transition of the GCM. According to our example from Figure 1,
a generated sequence could be <Seller:Request, Buyer:Response, Seller:Cancel>.
Given the receive semantics of GCM, this reads:

<Seller receives Request, Buyer receives Response, Seller receives Cancel>.

– Step 2: The local event sequences corresponding to the test cases are computed.
This is necessary because the GCM only specifies the order of receive events.
Therefore the receive sequences have to be enhanced by their corresponding send
events, taking the LPMs and channel model into account. According to Figure 1,
the only possibility of achieving the generated sequence in Step 1 is this:

<Buyer sends Request, Seller receives Request, Seller sends Response, Buyer
sends Cancel, Buyer receives Response, Seller receives Cancel >.

This step is MCM-specific and relies on the receive semantics of the choreogra-
phy model. It can be done automatically without major issues.

– Step 3: Generated abstract test cases are translated into executable test suites.
This step is semi-automatic. We can automatically generate the concrete test
steps as well as the state checks on the local components. However, as triggers
are not fully modeled in MCM, this information has to be added manually to the
test sequences. The test concretization is further described in Section 6.

Step 1 is concerned with the integration of a test generator. The fact that the MCM
editor is based on the Eclipse plugin technology opens up the possibility of integrating
multiple test generators. For the moment we have experimented with the following
two test generators:

– An SAP in-house solution for test generation – We implemented classical graph-
coverage algorithms working directly on the global state space of the GCM. The
major disadvantage is that it takes time and effort to reach the state of the art in
MBT, so we also used an external tool (below) for that.

– An MBT prototype from IBM Research – The usage of this tool, described in
Section 5, is enabled by the transformation from MCM to UML explained in Sec-
tion 4. However the current version of the tool has a complementary coverage

www.manaraa.com

318 A. Stefanescu, S. Wieczorek, and A. Kirshin

criteria based on input coverage of the operation calls and their parameters. The
operation calls are used to trigger the transitions in the UML state machine corre-
sponding to the choreography.

Figure 2 depicts the tool architecture based on the MODELPLEX platform. In the
middle it shows the MCM module including an MCM editor and a model importer
from SAP’s existing models. The toolset on the top right of the figure shows the UML
test generator and debugger, which are part of the Simulation, Verification and Test-
ing Workbench developed by the MODELPLEX project [14]. This workbench also
includes tools for performance simulation and model verification that are not pre-
sented here. The connection between MCM and UML is made via the MCM2UML
and the TPTP2SAP transformer modules. The SAP in-house MBT solution is not
depicted.

Fig. 2. Tool architecture of the MBT4Chor approach

4 Translation from MCM to UML with Java Annotations

This section describes how the MCM models are transformed into the annotated UML
model that serves as the test model. These UML models include the UML classes and
composite structures as structural constructs, and the state machines as behavioral
constructs. The transformation was programmed in Java using the APIs provided by
the MCM tooling and the APIs provided by the EMF-implementation UML21 for the
Eclipse platform of the UML 2 OMG metamodel.

The mapping used in the translation of MCM to UML is sketched below:

a. For each message type mt of the choreography, we generate an UML Signal sig-
nal_mt (denoted by a classifier symbol with the keyword <signal>). The data type

1 http://www.eclipse.org/modeling/mdt/?project=uml2

www.manaraa.com

 MBT4Chor: A Model-Based Testing Approach for Service Choreographies 319

of the signal is similar to the data type of the message. To keep the test model
simple, we ignore the structural information that is not relevant for testing. Addi-
tionally, we create a UML SignalEvent associated with each Signal. The signal
events trigger the transitions of the UML state machine for the choreography.

b. For each partner p in the choreography, we generate a UML Class class_p. Then:

– For each service s_p provided by a partner p, we generate a method
method_s of the class class_p, with the same parameters as the service.
The parameters are calculated from the WSDL description of the service.
The data types of the parameters are, of course, compliant with the mes-
sages exchanged via the service.

– The action associated with method_s is given as an opaque behavior with
Java as the language. The code implements the sending of the signal sig-
nal_s_p associated with the service s_p using the signal sending API of
the Model Execution engine (MexSystem). This is the corresponding
code:

Signal_S_P signal = new Signal_S_P();
signal.parameter=parameter;
MexSystem.send(choreography_instance,signal);

c. For the choreography protocol, we create a UML Class class_chor and create
associations from each of the partners to this choreography class (such that they
can reference a choreography instance and send signals to it).

d. We create the initial configuration of the system as a UML composite structure
with a choreography instance and an instance for each of the choreography
partners. The instances of the partners are connected by UML connectors to the
choreography instance.

e. The core of the transformation is given by the translation of the MCM choreogra-
phy protocol into a UML state machine, which is associated as behavior to the
class_chor defined above.

– The concurrent states of MCM are translated into concurrent regions of
the state machine.

– MCM activation of message interaction can involve OR and AND opera-
tions over the MCM local parallel states. They are simulated with junc-
tion and join pseudo-states in the UML state machine. Moreover, the ef-
fect of an MCM message on the local parallel states is simulated using
fork pseudo-states. The initial and end states are mapped to UML initial
and final pseudo-states.

– The MCM guards on the messages are translated into Java guards. Note
that complex decision procedures need to be encoded in Java functions.
For example, the existential and universal first-order quantifiers, for all
(∀) and there exists (∃), we need Java helper methods to be able to im-
plement constraints such as this:

forall x: msg [SalesOrder. Item] (x [ProcessingStatusCode] ==
CONFIRMED);

meaning that all items of the sales order transmitted in the message are
confirmed.

www.manaraa.com

320 A. Stefanescu, S. Wieczorek, and A. Kirshin

– The translation of MCM action code and MCM global variables to Java is
straightforward and we do not explain it in detail.

Note that the above translation takes into account the special semantics of the execu-
table UML models supported by the IBM tool described in Section 5.

5 UML Test Generator and Model Debugger

This section describes tools that were developed at the IBM Haifa Research Lab and
used in our experiment. They are extensions of Rational Software Architect (RSA),
which is used to import the MCM descriptions that have been transformed to UML.
As explained in Section 4, the structure of the system is described using class dia-
grams and composite structure diagrams. State machines, activities diagrams, and
Java code snippets are used to describe the behavior. In our scenario, the Model Exe-
cution Engine [5] executes the model “behind the scenes”, while the “main actors” are
the model debugger and test generator (see Figure 3, left).

Rational Software Architect

UML Model

Model Execution Engine

Model Debugger Test Generator

Abstract Test Suite

Active
(current)

state

Execution
pending

Running
transition

Breakpoint

Fig. 3. The architecture of the IBM prototype (left) and a debugging session of a UML model
(right)

The model debugger verifies that the model describes the correct expected behav-
ior of the System Under Test (SUT). It enables the user to interact with the executable
model in two ways:

– To control the execution by sending inputs to the model: that is, create instances,
invoke operations on instances, and send signals to instances.

– To observe the execution by observing the outputs of the model: that is, the at-
tribute values, active states, and signals to the environment.

The model debugger helps answer the question “Is there a defect in the model?” at
two different stages: before test generation during the modeling of the SUT, and after
test generation, when a test case fails. In the latter case, the defect can be either in the
SUT or in the model. If the defect is in the model (its behavior is wrong), the debug-
ger localizes and fixes the defect, thus answering the question, “Where is the defect?”.
The debugger allows the setting of breakpoints on model elements. Figure 3 illustrates

www.manaraa.com

 MBT4Chor: A Model-Based Testing Approach for Service Choreographies 321

a running state machine with a highlighted active state and running transition. It also
shows breakpoints and execution pending elements.

The test generator also uses the model execution engine and acts similarly to the
model debugger by sending inputs and observing outputs. The inputs are recorded as
test sequences of stimuli applied to the SUT. The outputs are also recorded as ex-
pected outcomes. In other words, the model is used as a test oracle predicting the
correct behavior. During test generation the next input for a test sequence is selected
by the test generator depending on the coverage task chosen by the user:

– Random generates random sequences of stimuli (no coverage)
– Input Coverage covers as many different inputs as it can (a specific input)
– Input Step Coverage covers as many different inputs in each step in the test case

as it can (a specific input in a specific step in the test case)
– Input Step Pair Coverage covers as many different pairs of inputs in each pair of

steps in the test case as it can (a specific pair of input values in a specific pair of
steps).

The current version of the test generator only implements input coverage algo-
rithms. Their advantage is that such coverages do not face the problem of state explo-
sion. This problem occurs when test generators explore the whole state space of the
test model, which can grow very quickly for large test data (as is the case with
MCM).

Another advantage of the test generator is that it actually executes the model of the
SUT. This enables us not only to generate the sequences of stimuli but also to pre-
cisely predict the expected behavior (outputs of the SUT). Test generators that stati-
cally analyze the model often have problems to predict these expected results.

Another strength of the test generator is that it uses the same model execution en-
gine as the model debugger. In case of wrongly generated tests resulting from an
incorrect test model, the problem can be easily located and fixed in the model using
the model debugger. Test generators using their own execution engine might interpret
the semantics of the model differently, which complicates the maintenance of the
original model.

For the test suite format, we use the Eclipse Test & Performance Tools Platform2
(TPTP). Test steps (stimuli and observations) reference model elements and a special
editor was developed at the IBM Haifa Research Lab for convenient viewing and
editing the generated tests. In addition to using the described test generator, tests can
also be created manually using the editor. Finally, the test can be either translated to a
specific test script for execution on the SUT or alternatively, TPTP can be extended to
execute the test directly on the SUT.

6 Test Case Execution in SAP Backend

Once the abstract test cases (in TPTP format) are generated, they must be transformed
into executable test scripts. As mentioned in [17], this task is very important and as
observed in practice it can take up to half of the time spent on the whole model-based
testing approach.

2 http://www.eclipse.org/tptp

www.manaraa.com

322 A. Stefanescu, S. Wieczorek, and A. Kirshin

For our approach we have implemented a transformation from the abstract test
cases to an internal SAP test language for integration testing. This language follows
the keyword-driven testing principles (see [17, Chapter 2]), i.e., it has a higher level
of abstraction than the SAP’s eCATT script language usually used for testing SAP
applications [12]. According to nomenclature of [17, Chapter 8], we use a mixed ap-
proach for our test concretization, which is a combination of the test adaptation and
test transformation modes. To increase the usability and help the testers to visualize
the generated test case, we also implemented a transformation of the generated mes-
sage exchange sequence into UML sequence diagrams.

Since the test data used for the real tests that can be executed on the SUT is very
complex, it that it relies on existing master data and different system configurations,
we currently do not generate it automatically. Instead we leverage the experience of
the testers to reduce the effort and risk of rather difficult test data modeling in a new
environment that could be error-prone.

7 Related Work

MBT is an active research area, but it is still not adopted by mainstream industry. In
particular, we are not aware of any MBT tools directly running on models using clas-
sical choreography languages such as WS-CDL, BPMN, or Let’s Dance. Existing
MBT approaches for web service (WS) testing concentrate either on testing a single
WS by adding state machines to the WSDL interface descriptions [7] or testing WS
orchestrations based on BPEL [8]. No approach addresses the utilization of global
choreography models for WS interaction testing. In a choreography setting similar to
ours, we found only one tool called WS-Engineer [6] which transforms WS-CDL as
choreography models and BPEL4WS as local models into labeled transition systems
(LTSs). These LTSs are used for model verification, but not for test generation.

The fact that we generate UML models on the basis of MCM opens up the possibil-
ity of making use of existing MBT approaches and tools for UML. For instance, ap-
proaches for component integration testing based on UML are described in [1,11].
Examples of commercial tools for MBT based on UML are: ATG tool3 from Rhapsody
based on UML, Test Designer from Smart Testing4 for UML with OCL as action code,
and QTronic5 from Conformiq for UML with Java annotations. However, using any of
these tools or approaches should be decided after a careful analysis of capabilities,
input test modeling and output test format, and semantics of the used executable UML.

8 Conclusions

This paper presents an end-to-end process for model-based testing of service choreo-
graphies, starting with the modeling using the domain specific language MCM, its
transformation to UML, the test generation and finally test execution in the backend.
Although we managed to automate a large part of this complex process, there is still
room for improvement. This section describes some of the experiences we gained.

3 http://modeling.telelogic.com/products/rhapsody/test/automated-test-generation.cfm
4 http://www.smartesting.com
5 http://www.conformiq.com/qtronic.php

www.manaraa.com

 MBT4Chor: A Model-Based Testing Approach for Service Choreographies 323

Lessons learned and challenges encountered: Given the proprietary modeling stack at
SAP, we had to design a DSL called MCM for modeling choreography with the pur-
pose of test generation rather than directly using UML (see also [9]). The designed
language has a precise semantics and incorporates existing SAP metamodels and
feedback from SAP architects and testers to foster internal adoption. Our approach
relies on the mature test execution environment of SAP that provides keyword-driven
testing tools. The disadvantage of a DSL is that mature MBT tools cannot be directly
applied, but model transformations to general purpose languages are needed. We
learned from the experiences of the AGEDIS project [10] and chose UML with Java
annotations as the target language. The Java language has an imperative semantics (as
opposed to OCL, for instance) and is expressive enough to capture our complex
guards based on first-order logic. The model execution engine [5] used by the test
generator described in Section 5 is able to execute UML with Java annotations. While
the test generation and test execution can be automated, we are currently not able to
fully automate the test data generation. This is due to the complex master data and test
data constraints in an ERP system [21] that cannot be easily be modeled. Although
some of the constraints on the test data can be captured in the MCM guards, it is still
possible that we generate infeasible paths for which we cannot provide proper test
data. These must be filtered out manually by the testers and the feedback incorporated
into the test generator that must provide alternative paths. We will look at ways to
improve these inconveniencies based on the test pilots currently running at SAP.

Future Work: Our plans are driven by the above mentioned challenges in the test data
provision area. For that, we are currently working towards incorporating a model-
checker and constraint-based solver that could help to reduce the number of infeasible
paths due to data inconsistencies. This is, however, a difficult problem (even undecid-
able) in general. We also plan to better support and validate the semantical relation
between the local and global views of MCM and the traceability link between MCM
and the generated UML. Moreover, we will evaluate test effectiveness and bug detec-
tion capabilities based on different model coverage criteria. We also want to experiment
with the UML-based MBT tools from Section 7, but first the effort to accommodate
their different semantics (see also [4]) and corresponding model transformations must
be evaluated.

Acknowledgments. This work was partially supported by the EC-funded project
MODELPLEX [14]. We thank Roger Kilian-Kehr for useful comments on a draft of
this paper.

References

1. Ali, S., Briand, L., Jaffar-Ur Rehman, M., Asghar, H., Iqbal, M.Z., Nadeem, A.: A State-
Based Approach to Integration Testing Based on UML Models. Information & Software
Technology 49(11–12), 1087–1106 (2007)

2. Benedetto, C.: SOA and Integration Testing: The End-to-end View. SOA World Maga-
zine 6(8) (2006)

3. Business Process Modeling Notation (BPMN) Specification, Final Adopted Specification.
Technical report, Object Management Group (OMG), http://www.bpmn.org

4. Crane, M., Dingel, J.: UML vs. Classical vs. Rhapsody Statecharts: Not All Models Are
Created Equal. Software and System Modeling 6(4), 415–435 (2007)

www.manaraa.com

324 A. Stefanescu, S. Wieczorek, and A. Kirshin

5. Dotan, D., Kirshin, A.: Debugging and Testing Behavioral UML Models. In: OOPSLA
Companion 2007, pp. 838–839. ACM Press, New York (2007)

6. Foster, H., Uchitel, S., Magee, J., Kramer, J.: WS-Engineer: A Model-Based Approach to
Engineering Web Service Compositions and Choreography. In: Test and Analysis of Web
Services, pp. 87–119. Springer, Heidelberg (2007)

7. Frantzen, L., Huerta, M.N., Kiss, Z.G., Wallet, T.: On-The-Fly Model-Based Testing of
Web Services with Jambition. In: 5th Int. Workshop on Web Services and Formal Methods
(WS-FM 2008). LNCS. Springer, Heidelberg (2009) (to appear)

8. García-Fanjul, J., de la Riva, C., Tuya, J.: Generation of Conformance Test Suites for
Compositions of Web Services Using Model Checking. In: Proc. of TAIC PART 2006,
pp. 127–130. IEEE Computer Society, Los Alamitos (2006)

9. Hartman, A., Katara, M., Olvovsky, S.: Choosing a Test Modeling Language: A Survey.
In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 204–218. Springer,
Heidelberg (2007)

10. Hartman, A., Nagin, K.: The AGEDIS Tools for Model Based Testing. In: Jardim Nunes,
N., Selic, B., Rodrigues da Silva, A., Toval Alvarez, A. (eds.) UML Satellite Activities
2004. LNCS, vol. 3297, pp. 277–280. Springer, Heidelberg (2005)

11. Hartmann, J., Imoberdorf, C., Meisingerm, M.: UML-Based Integration Testing. In: Proc.
of ISSTA 2000, pp. 60–70. ACM Press, New York (2000)

12. Helfen, M., Lauer, M., Trautwein, H.M.: Testing SAP Solutions. SAP Press (2007)
13. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography Descrip-

tion Language Version 1.0. W3C Candidate Recomm, Technical report (2005)
14. MODELPLEX Project. Funded by European Commission, FP6, Grant no. 034081,

http://www.modelplex.org
15. O’Leary, D.E.: Enterprise Resource Planning Systems – Systems, Life Cycle, Electronic

Commerce and Risks. Cambridge University Press, Cambridge (2000)
16. SAP AG, Enterprise SOA in a Nutshell (2007),

 http://help.sap.com/redirect_sdn_esoa/
 redirect_esoainanutshell.htm

17. Utting, U., Legeard, B.: Practical Model-Based Testing – A Tools Approach. Morgan
Kaufmann Publ., San Francisco (2007)

18. Web Services Reliable Messaging (WS-ReliableMessaging), Version 1.1. OASIS Consor-
tiom, http://docs.oasis-open.org/ws-rx/wsrm/v1.1/wsrm.pdf

19. Wieczorek, S., Roth, A., Stefanescu, A., Charfi, A.: Precise Steps for Choreography Mod-
eling for SOA Validation and Verification. In: International Symposium on Service-
Oriented Software Engineering (SOSE 2008), pp. 148–153. IEEE Computer Society, Los
Alamitos (2008)

20. Wieczorek, S., Stefanescu, A., Großmann, J.: Enabling Model-Based Testing for SOA In-
tegration Testing. In: Proc. of 1st Model-based testing in practice workshop (MOTIP
2008), pp. 77–82. Fraunhofer IRB Verlag (2008)

21. Wieczorek, S., Stefanescu, A., Schieferdecker, I.: Test Data Provision for ERP Systems.
In: Int. Conf. on Software Testing, Verification and Validation (ICST 2008), pp. 396–403.
IEEE Computer Society, Los Alamitos (2008)

22. World Wide Web Consortium (W3C): Web Service Glossary. Version 20040211,
 http://www.w3.org/TR/ws-gloss

23. Woods, D., Mattern, T.: Enterprise SOA – Designing IT for Business Innovation.
O’Reilly, Sebastopol (2006)

24. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s Dance: A Language for Service
Behavior Modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 145–162. Springer, Heidelberg (2006)

www.manaraa.com

Model-Based Interoperability of Heterogeneous
Information Systems: An Industrial Case Study

Nikola Milanovic1, Mario Cartsburg1, Ralf Kutsche1, Jürgen Widiker1,
and Frank Kschonsak2

1 TU Berlin
{nmilanov,mcartsbg,rkutsche,jwidiker}@cs.tu-berlin.de

2 Klopotek AG
f.kschonsak@klopotek.de

Abstract. Integration of heterogeneous and distributed IT-systems is
one of the major cost-driving factors in the software industry. We in-
troduce a model-based approach for information system integration and
demonstrate it on the industrial case-study of data integration between
the Oracle database management system and the SAP R/3 enterprise
resource planning system. Particular focus is on multi-level modeling
abstractions, integration conflict analysis (automatic data model match-
ing), semantic reasoning, code generation and tool support.

1 Introduction and Related Work

Integration of complex and heterogeneous IT-systems is one of the major cost-
driving factors in the software industry today. There is an increasing need to
systematically address integration in accidental architectures, that have grown
in an uncontrolled manner in heterogeneous enterprise environments.

Schema matching approaches [1] detect dependencies between data model el-
ements at the model or instance levels. Extract-Transform-Load (ETL) tools,
such as CloverETL, use schema matching methodology to enable integration of
multiple data sources. Such tools are today primarily used for data warehous-
ing. Furthermore, languages exist that enable specification of transformations
between data models, such as Ensemble [2]. However, the applicability of all
mentioned approaches diminishes with the increased heterogeneity of the under-
lying systems, for example, when they are not relational, or when data model is
not immediately accessible in form of an ER model or UML class diagram.

Another approach is the Service Oriented Architecture (SOA). In SOA, data
sources are wrapped as services and accessible to the Enterprise Service Bus
(ESB) engine, which orchestrates data and functional logic. The business process
orchestration standard is de facto BPEL, and there are numerous commercial
and open-source ESB engines. ESB however expects that all service endpoints
are compatible and no data or behavior conflicts will occur between them. Oth-
erwise, either the endpoint itself has to be modified (frequently impossible), or
the transformation is performed at the message level (XSLT or BPELJ). From

R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 325–336, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.manaraa.com

326 N. Milanovic et al.

the architectural standpoint, this is bad as it introduces mixing of orchestration,
data model and implementation. Furthermore, all ESB implementations assume
mandatory SOAP/XML serialization, which restricts application domain and
hampers performance. Finally, approaches such as mapping editors (e.g., Altova
MapForce) and extended UML Editors (e.g., E2E Bridge) lack code generation,
and as such are more suitable for analysis than for development.

For these reasons, as a part of the R&D program of the German government,
project BIZYCLE (www.bizycle.de) was started in early 2007 in order to inves-
tigate in large-scale the potential of model-based software and data integration
methodologies, tool support and practical applicability for different industrial
domains. In this paper we present one BIZYCLE industrial case-study and try
to identify potential advantages of the proposed process, platform and tools.

2 Integration Scenario and the Current Solution

In the media and publishing industry, there are often several IT-systems which
have to synchronize their data. We describe a scenario where the Oracle database
server of an IT software provider has to send Customer Master Data to the SAP
ERP System, which is hosted on its customer side. The Oracle database stores
customer information and is therefore the basis of any financial transaction. The
SAP system manages financial accounting services.

In the current solution, Oracle database exports required data in a CTM file.
This is a proprietary data format created by the software provider. It is then
converted into plain-text ASCII file, stored on a file server (provider’s endpoint).
A dedicated ABAP program (SAP legacy language) on the customer side is
reading this file and converting it into a proprietary Batch Input structure which
is then imported. The scenario is point-to-point, asynchronous and with several
modal fragmentations. Many formats are used and responsibilities in case of
inconsistent data are not always clear to address. Furthermore, fragmentations
make the evolution very difficult. Additional 3rd party supplier has also to be
hired to develop the import ABAP routine.

Although outdated and inflexible, the solution represents the industrial prac-
tice in the field of the large-scale data integration. It is influenced by factors
such as presence of the legacy code (e.g., CTM export, ABAP import), time-
to-market pressure, mixture of the business, presentation and data layers, and
high investments and unaffordable learning curve required for the refactoring.
Furthermore, sector-specific factors in the media and publishing sector (complex
and dynamic business processes, strong graphical and aesthetic requirements
and outdated technologies) contribute to the current unfavorable situation.

3 BIZYCLE Integration Process

Integration tasks are performed today by experienced software engineers and
application experts, manually programming the connectors i.e. the glue among

www.manaraa.com

Model-Based Interoperability of Heterogeneous Information Systems 327

software components or systems. This requires domain-specific as well as in-
tegration requirements’ analysis skills. In order to make the error-prone and
expensive integration tasks more feasible, we developed a methodology for data
and software integration, calling it the BIZYCLE integration process [3,4,5,6].
The essence of the BIZYCLE integration process is application of model-based
methodologies for providing multi-level integration abstractions, thus decoupling
the knowledge required for integration and making the process partially auto-
matic.

The levels of abstraction supported are the computation independent model
(CIM), platform specific model (PSM) and platform independent model (PIM).
The CIM level captures the integration business process. This model is refined
at the PSM level where properties of interfaces realizing the integration scenario
are described, such as structure, semantics, communication, non-functional prop-
erties and behavior. All PSM models are transformed to the PIM level, which
represents a common abstraction level which is used to discover integration con-
flicts (incompatible interfaces). Note that the ordering CIM-PSM-PIM departs
from the usual MDA recommendation CIM-PIM-PSM. The reason is that we
perform system integration and need to collect technical information about the
existing interfaces first and then abstract them in order to compare and mediate
between them. Based on the results of the conflict analysis, appropriate connec-
tor model and code for the connector component are generated. In the following
sections we will demonstrate application of the BIZYCLE integration process
using the Oracle-SAP data integration case study as an example.

3.1 Computation Independent Model

The integration requirements are described at the computation independent
model (CIM) level. It encapsulates technology-agnostic details of the integration
business process – no detailed knowledge about the underlying platform-specific
technology is required. The CIM is visualized in four different graphical views
(flow, component, object and connection), reducing the model complexity.

The CIM flow view consists of compartments similar to UML swim lanes
which represent either a system/application or a connector. Systems have sev-
eral import and export interfaces and business functions. A connector consists
of special business functions called connector functions. Elements of a swim lane
can be connected via directed control flow links and system interfaces and con-
nector functions can be connected across the swim lanes by connections (infor-
mation flow). In the present integration scenario, there are two systems (Oracle
DBMS and SAP ERP) connected via one connector (Figure 1). At the CIM
level there are two export business interfaces (CustomerExport and SalesLedger-
Export) and one import business interface (SAPCustomer). The Oracle data are
aggregated by a connector function. All business objects involved in the inte-
gration scenario are defined in the CIM object view. To be able to create com-
plex business objects, aggregation and containment are supported. In our case
there are three defined business objects: OracleCustomer, OracleSalesLedger and

www.manaraa.com

328 N. Milanovic et al.

Fig. 1. CIM Flow View

SAPCustomerSalesLedger, which are also semantically annotated (see Figure
4a and Table 1). Connections defined in the CIM flow view transport business
objects, which can be associated with the corresponding business functions.

3.2 Platform Specific and Platform Independent Models

Interfaces realizing the Oracle-SAP scenario have to be described in a technology-
specific way now. This is necessary to perform the conflict analysis, generate ap-
plication endpoints for every interface, and specify the communication between
systems and connectors. The language for interface descriptions is a platform
specific model (PSM). There is one PSM metamodel for each platform currently
supported: relational databases, XML files, Web Services, J2EE and .NET com-
ponents and ERP systems. PSMs can be generated manually using a graphical
model editor or they can be extracted automatically from the system interfaces.
Oracle models are generated based on the underlying Oracle data model, and
SAP model is generated by reading the Business Object Repository component.
Models presented in this paper are excerpts from the real scenario.

There are three technical interfaces involved in the Oracle-SAP scenario. On
the Oracle side, interfaces Customer and SalesLedger are shown in Figure 2.
The respective models contain two SQL query interface elements with access
information (not shown in Figure). A query element consists of an output transfer
table. The SAP side exposes the interface Customer of the IDOC type, consisting
of DEBMA05 segments. While the whole IDOC PSM contains 35 segments with 613
fields, Figure 3 shows only the small excerpt (E1KNA1M and E1VCKUN segments)
to illustrate the integration scenario. The columns in the Oracle PSM and all
segment fields in the SAP PSM are annotated with semantic concepts (Table 1
and Figure 4a). Business requirements at the CIM level are thus matched with
the technical elements at the PSM level. Semantic annotations are realized by
a model weaving component. The semantic knowledge is represented using a
metamodel mirroring Resource Description Framework (RDF).

www.manaraa.com

Model-Based Interoperability of Heterogeneous Information Systems 329

Fig. 2. Oracle Platform Specific Model (excerpt)

Fig. 3. SAP Platform Specific Model (excerpt)

Platform independent model (PIM) is used to abstract platform-specific prop-
erties from interface description models. This is a precondition for the conflict
analysis process. The PIM core contains interface, structure, property, behav-
ior, communication and semantic packages. Depending on the source PSM, an
interface can be functional, object-oriented/method, document or data. Each
interface and its parameters have a structure defined within platform inde-
pendent, common type system. Platform specific types are then mapped into
this type system in the process of model transformation. Properties of plat-
form specific communication channels are abstracted using AccessPattern and

www.manaraa.com

330 N. Milanovic et al.

MessageExchangePattern elements, describing function- and document-based
communication styles. The PIM is generated automatically by the BIZYCLE
integration framework using model-to-model transformation component. Table
1 shows semantic annotations for the PIM, which are transferred from respec-
tive PSMs. After the model transformation, system interfaces are described in a
common, technology-independent language and ready for the conflict analysis.

3.3 Conflict Analysis

The purpose of the conflict analysis is detection of mismatches between com-
ponent interfaces. The conflict analysis process consists of five ordered analysis
steps which handle conflicts of the corresponding type: semantic, behavior, prop-
erty, communication and structure analysis.

The semantic analysis phase uses platform-independent models (PIMs), do-
main ontology and the list of defined requirements generated on the basis of the
CIM model. It outputs a list of requirement mappings in the context of a shared
domain ontology. Inputs of the behavior and property conflict analysis are PIMs,
CIM, application protocol logic (APL) (set of interface execution paths) and the
requirement mappings. Behavior analysis checks control and data flows speci-
fied in CIM as well as requirement mappings against the behavior constraints
described with APL, to determine a conflict-free call order within the connec-
tor logic, using simulation and bisimulation [7] as well as invariant preservation
proofs [8]. Behavior and property conflict analysis phases deliver connector call
logic (CCL) containing a conflict-free interface call order and the list of message
processors which resolve discovered conflicts. Communication conflict analysis
examines communication properties of interfaces, such as synchronicity or mes-
sage exchange patterns, using process algebra [9]. Finally, structural analysis
addresses data types and the runtime value format to overcome structural het-
erogeneity using typing and subtyping rules [10]. More information about the
conflict analysis may be found in [11].

The conflict analysis of the Oracle-SAP scenario consists of two parts: seman-
tic (SemCA) and structural (StCA) analysis. As there is no functional coupling,
behavior and property analysis are skipped. The starting point of SemCA is
creation of the requirements. Based on the data flow, we distinguish between
Business Object Export Requirements (BOER) and Business Object Import
Requirements (BOIR). BOERs are responsible for the extraction of business ob-
jects from the Oracle database (OracleCustomer and OracleSalesLedger) while
BOIRs cover the passing of the business object to the SAP system (SAPCus-
tomerSalesLedger). SemCA creates a requirement mapping for each identified
requirement. Additional requirements can emerge during the conflict analysis
process. A requirement mapping references the corresponding business require-
ment and the (parf of) PIM interface, which meets the requirement: the mapped
elements refer to the same or equivalent ontology concept. The ontology and
annotations are given in Table 1 and Figure 4a.

The business object OracleSalesLedger is mapped to the export parame-
ters CREDIT CARD VALID FROM, CREDIT CARD VALID UNTIL and CREDIT CARD NO

www.manaraa.com

Model-Based Interoperability of Heterogeneous Information Systems 331

of the interface CTM INTERFACE CUSTOMER as well as CREDIT CARD TYPE of the
CTM INTERFACE SALES LEDGER. Two mappings for the concept Customer Num-
ber are created since both Oracle interfaces provide export parameters annotated
with this concept (CUSTOMER NO). The same applies to the business object Oracle-
Customer. At this point the user has an option to eliminate one of the redundant
mappings. Since no export parameters annotated with the concept Name can
be found, the algorithm uses logical reasoning to identify the domain concept
Name Concatenation which delivers a value annotated with the required con-
cept (Name) and its implementation ConcatenateName. The newly generated
requirements are fulfilled by mappings to CREDIT CARD OWNER FIRSTNAME and
CREDIT CARD OWNER LASTNAME annotated with the concepts Firstname and Last-
name.The remaining parts are mapped to the export parameters CUSTOMER TYPE,
ADDED VALUE TAX, LANGUAGE OF LETTER, TURNOVER TAX and TAX NUMBER.

Table 1. Semantic Annotations

Oracle DBMS
PSM: SQLInterface Customer
PIM: FunctionInterface CTM INTERFACE CUSTOMER

Element Name Annotated with

CUSTOMER NO Customer Number
CUSTOMER TYPE Customer Type
LANGUAGE OF LETTER Customer Language
SALES TAX IDENT NO Turnover Tax
CREDIT CARD NO Credit Card Number
CREDIT CARD INSTITUTE Credit Card Institute
CREDIT CARD OWNER FIRSTNAME Firstname
CREDIT CARD VALID FROM Credit Card Valid From
CREDIT CARD VALID UNTIL Credit Card Valid To
CREDIT CARD OWNER LASTNAME Lastname

PSM: SQLInterface SalesLedger
PIM: FunctionInterface CTM INTERFACE SALES LEDGER

Element Name Annotated with

CUSTOMER NO Customer Number
TAX NUMBER Tax Number
CREDIT CARD TYPE Credit Card Type
ADDED VALUE TAX Added Value Tax

SAP R3
PSM: Segment E1KNA1M
PIM: Document Interface DEBMAS05

Element Name Annotated with

KUNNR Customer Number
KUKLA Customer Type
SPRAS Customer Language
STCD1 Added Value Tax
STCD2 Tax
STCEG Tax Number
SPRAS ISO Customer Language

PSM: Segment E1VCKUN
PIM: Document Interface DEBMAS05

Element Name Annotated with

CCNUM Credit Card Number
CCNAME Credit Card Owner
DATAB Credit Card Valid From
DATBI Credit Card Valid To
CCTYP Credit Card Type

Provided Function
Element Name Annotated with

ConcatenateName (Function) Name Concatenation
Firstname (Import Parameter) Firstname
Lastname (Import Parameter) Lastname
Name (Export Parameter) Name

Business Objects
Business Object Name Annotated with

OracleCustomer Customer Number
Customer Type
Name
Customer Language
Tax Number
Turnover Tax
Added Value Tax

OracleSalesLedger Customer Number
Credit Card Number
Credit Card Valid From
Credit Card Valid To
Credit Card Type

SAPCustomerSalesLedger Customer Number
Customer Type
Name
Customer Language
Tax Number
Turnover Tax
Added Value Tax
Credit Card Number
Credit Card Valid From
Credit Card Valid To
Credit Card Type

The algorithm now uses logic reasoning to map the part of the business object
SAPCustomerSalesLedger annotated with TurnoverTax to the import parame-
ter STCD2 annotated with Tax. This is possible due to the directed relation isA
between both concepts. Since no import parameters annotated with the concept
Name can be automatically detected, the algorithm yields a non-resolvable se-
mantic conflict, which can be overcome if CCNAME is correctly annotated with
Name as it contains only a name string. After this correction, the conflict is

www.manaraa.com

332 N. Milanovic et al.

removed. The business object part annotated with Customer Language is
mapped to both input parameters SPRAS and SPRAS ISO.

The first step of the structural conflict analysis is the building of abstract
data blocks to compose input parameters of the PIM interfaces. Using seman-
tic mappings the interface call order is determined to obtain the input pa-
rameter set of each concrete technical interface. Next, for each required input
parameter the algorithm uses semantic mappings to determine corresponding
export parameter that will be passed to the import interface and to compare
data types of both elements. Detected disparity of data types indicates a struc-
ture conflict that is eliminated by adding the appropriate type transformer to
the connector model, if possible (determined by the subtyping and conversion
rules of the common type system). In the scenario a structure conflict between
KUNNR of type String and CUSTOMER NO of the type Number in both interfaces
CTM INTERFACE CUSTOMER and CTM INTERFACE SALES LEDGER is detected. There-
fore, a conversion from number to string will be performed. Another conflict
exists between CREDIT CARD VALID FROM and CREAD CARD VALID UNTIL of the
type Date with DATAB and DATABI of the type String. Therefore, a conversion
from date to string will be performed here. Finally, there is a structural conflict
between TAX NUMBER and ADDED VALUE TAX of the types Number and Float on
the CTM INTERFACE SALES LEDGER side and STCEG and STCD1 of the type String
on the E1KNA1M side. The first conflict requires number to string, and the second
float to string conversion. The results of the conflict analysis process (require-
ment mapping and transformations) are shown in the Figure 4b.

Fig. 4. a) Domain Ontology (excerpt) b) Requirement Mappings

www.manaraa.com

Model-Based Interoperability of Heterogeneous Information Systems 333

3.4 Connector and Code Generation

The connector is a mediator component that resolves integration conflicts by
matching capabilities and requirements of the components that are to be inte-
grated [12]. Connector generation is based on the generative programming and
code generation methods, as the formal analysis will first produce a connector
model, based on which the code for the target runtime middleware is then gen-
erated. The connector generation takes the PSM/PIM models and results of the
conflict analysis process as inputs and performs generation of application (ser-
vice) endpoints and transformations that ensure conflict-free integration. At the
runtime level we treat all exchanged information as messages. The metamodel
abstraction used for resolving semantic and structural conflicts are message pro-
cessors: senders, receivers, generators (timers), filters, transformers, aggregators
and routers, implementig a subset of EAI patterns [13]. Messages themselves can
encapsulate events, data objects or function calls. Transformation requirements
are specified during the conflict analysis process and formalized using UML ac-
tion semantics. In this case, two data messages are received from the Oracle end-
point, aggregated, transformed (NumberToString, FloatToString, DateToString
and ConcatenateName) and finally received by the SAP endpoint.

We currently support Java Emitter Template (JET), open Architecture Ware
(oAW) and Java reflection for the code generation. The code generation using
JET and oAW is based on code templates. In case of Java reflection a generic
Call object is deployed which is able to interpret any given PSM. One advantage
of this concept is the flexibility of a deployed connector, which can be modified
online without stopping. A disadvantage may be the absence of any visible source
code which can discourage end users who want to retain source code ownership.

4 Implementation: BIZYCLE Integration Framework

The framework used to realize this case-study, BIZYCLE Model-Based Integra-
tion Framework (MBIF), is the prototypic realization of the project results. It
consists of the Integration Platform, Repository and the Runtime Environment.

BIZYCLE Integration Platform is based on the Eclipse Rich Client Plat-
form (RCP) and is implemented using RCP plugins. The integration platform
supports project management, model creation, editing, extraction and transfor-
mation, conflict analysis, connector and code generation.

The integration project management component consists of the workspace,
workflow, repository and deployment/runtime management components. The
integration process is managed by a workflow engine. Each integration step is
interpreted as a workflow task which can be assigned to multiple users. Pre-
and post-conditions, as well as the appropriate integration artifact types, are
defined for every task. The project management component further offers user
management capabilities such as definitions of roles and access rights. Runtime
environment management supports connector deployment and testing. Different
models represent specific levels of abstraction. In the Oracle-SAP scenario those

www.manaraa.com

334 N. Milanovic et al.

are four CIM views, various PSMs and the PIMs, ontology model and finally the
connector model. All models are represented, instantiated and persisted as in-
stances of the Ecore metamodel. Beside the tree-based model editors, a graphical
editor for each model type is provided. All figures describing the scenario in this
paper are directly exported from these graphical model editors, generated using
Eclipse Graphical Modeling Framework (GMF). Platform specific models can be
extracted automatically from the underlying systems using the PSM extraction
component, which investigates the interface structure and generates an adequate
PSM. After this step, PSMs can be viewed, changed or annotated using model
editors. The PSM-PIM model transformation component is based on the Eclipse
M2M project and rules are specified using ATL. The conflict analysis component
uses SWI-Prolog engine to find/solve integration conflicts. The artifacts such as
CIM, PIM and semantic model are transformed to a set of Prolog facts that
represents the necessary knowledge base. The component then generates queries
and creates appropriate connector model objects according to the received facts.
The connector generation component generates application endpoints and the
connector core. The generator component supports different technologies: JET,
oAW and Java reflection. The generated connector parts can be deployed in the
BIZYCLE Runtime Environment using deployment management capability of
the project management.
The BIZYCLE Repository [5] stores and manages model artifacts and their
metadata. Supported artifacts are metamodels, models, transformation rules,
code and documentation. User and project information, workflow descriptions
and definitions are also stored in the repository. The (long-lived) metamodels
and their domain-oriented specializations can be shared among many partners
using the repository as a conceptual basis for development and standardization.
Browsing the project artifacts, going back in the version history of an artifact and
the check-in/check-out functionality is supported by the repository. It offers a
consistency preservation mechanism, based on the consistency rules and actions
which are triggered whenever a repository may be in an inconsistent state. The
current implementation is based on the Subversion (SVN) repository for content
and Jena Semantic Web Framework for Java for metadata.
BIZYCLE Runtime Environment is based on the Glassfish OpenESB tech-
nology. Deployed application endpoints offer a SOAP interface or a JMS gateway.
The connector core consists of different message processors. A specific message
processing workflow, determined in the conflict analysis phase and generated as
BPEL, is executed to resolve integration conflicts. We omitted several runtime
environment capabilities and features from this paper, as their inclusion would
make models’ size prohibitive, such as modeling security and handling platform-
specific exceptions. BIZYCLE can store sensitive authentication/authorization
data in the repository, or include them directly into models. For providing busi-
ness data security, services of the underlying middleware, such as encryption, are
used. The runtime is also able to catch platform-specific exceptions (insofar as
they are part of the PSMs), handle them and depending on the exception type
abort or rollback the part or entire integration process.

www.manaraa.com

Model-Based Interoperability of Heterogeneous Information Systems 335

5 Lessons Learned

The model-based integration process and the tool suite described in this paper
have entered industrial validation phase. We summarize the feedback below.

The automation is achieved through model extraction, systematic conflict
analysis process and code generation. Up to now, these error-prone steps have
been performed manually, frequently resulting in costly data inconsistency and
incompatibility problems. Reuse is supported at the model-level, as interface
descriptions, transformation rules and semantic annotations can be shared via
BIZYCLE Repository. One of the biggest integration challenges is the evolu-
tion of business requirements or backend systems. Evolution and maintenance
are now supported at the model level, and code generation methods enable
smooth transitions. Metamodeling enables very fast tool prototyping and we had
only eighteen months between requirements specification and the first industrial
prototype. However, metamodels also improve understanding of the problem
domain. Multiple abstraction levels, such as CIM, PSM, PIM and code, offer
business architects the possibility not to start at the data model or code level
directly. The essential benefit offered by the multi-level modeling environment
is based on the capability of performing automated model transformations, ab-
stracting and refining over the given level hierarchy. We also observed smoother
communication between project managers and developers using the CIM and
PSM abstractions. Furthermore, the entire integration process is retained in-
house, generated code is owned, and outsourcing (e.g., ABAP programming) is
not required. Endpoint generation enables the use of the standardized and na-
tive system interfaces (e.g., SAP IDOC), instead of making costly workarounds
(CTM and ABAP conversion). We were able to successfully exchange the under-
lying middleware and to generate integration code based on the provided models
with no manual intervention. Thanks to the use of Domain Specific Languages
(DSL), the practice showed an affordable modeling learning curve, even with
staff with no previous modeling experience. The scalability is supported through
automatic model extraction and the use of tree-based editors.

However, model-based methods are not the panacea for large-scale integra-
tion problems, as certain open-issues remain. Metamodeling learning curve re-
mains prohibitive, even for market-leaders. Therefore, a knowledge base provider
(community or standardization board) is required to provide support for the
metamodel and platform evolution. Performance is an issue pending further in-
vestigation. Introducing additional levels of indirection (model levels and trans-
formations, code generators and the runtime) may impact scenario performance.
Optimizations at the model transformation and the runtime levels are being in-
vestigated. Regardless of tree-based editors, scalability is still an issue of large
scenarios. We worked with models with tens of thousands of nodes (complex
ERP data models) and identified an acute need for adequate model partitioning
methods and model search functions. The BIZYCLE Repository partially ad-
dresses this problem already. With large models, automatic semantic annotation
becomes a must. An additional effort is currently underway to provide a tool
which can extract semantic information from the Oracle, SAP and Web Service

www.manaraa.com

336 N. Milanovic et al.

platforms and unify it under a single ontology metamodel. We experienced the
lack of standardization of the semantic knowledge and focus on further research
in automatic ontology generation, ontology merging, and on the integration of
metamodel knowledge and ontology knowledge representations. Finally, there is
a need to support the connector life after deployment, primarily with model-
based testing and dynamic configuration.

While acknowledging mentioned issues and drawbacks, experience shows that
model-based methods, particularly domain specific languages such as CIM, PSM
and PIM, as well as model transformation and code generation techniques, show
promise to improve several aspects of the industrial practice in the area of large-
scale, heterogeneous information systems integration, primarily by introducing
a disciplined, methodical and reusable integration process.

References
1. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.

VLDB Journal 10(4), 334–350 (2001)
2. InterSystems: Ensemble data transformation language (2006),

http://www.intersystems.com/ensemble/docs/4/PDFS/

DataTransformationLanguage.pdf
3. Kutsche, R., Milanovic, N.: (Meta-)Models, Tools and Infrastructures for Business

Application Integration. In: UNISCON 2008, pp. 579–584. Springer, Heidelberg
(2008)

4. Kutsche, R., Milanovic, N., Bauhoff, G., Baum, T., Cartsburg, M., Kumpe, D.,
Widiker, J.: BIZYCLE: Model-based Interoperability Platform for Software and
Data Integration. In: Proceedings of the Model-Driven Tool and Process Integra-
tion Workshop at ECMDA (2008)

5. Milanovic, N., Kutsche, R., Baum, T., Cartsburg, M., Elmasgunes, H., Pohl, M.,
Widiker, J.: Model & Metamodel, Metadata and Document Repository for Soft-
ware and Data Integration. In: Proc. ACM/IEEE 11th International Conference on
Model Driven Engineering Languages and Systems (MODELS), pp. 416–430 (2008)

6. Agt, H., Bauhoff, G., Cartsburg, M., Kumpe, D., Kutsche, R., Milanovic, N.: Meta-
modeling Foundation for Software and Data Integration. In: Proc. 8th International
Conference on Information Systems Technology and Applications (ISTA) (2009)

7. Leicher, A.: Analysis of Compositional Conflicts in Component-based Systems.
Ph.D Dissertation, TU Berlin (2005)

8. Milanovic, N.: Contract-based Web Service Composition. HU, Berlin (2006)
9. Milner, R.: The Polyadic π-calculus: A tutorial. In: Logic and Algebra of Specifi-

cation. Springer, Heidelberg (2003)
10. Busse, S., Leicher, A., Süss, J.: Analysis of Compositional Conflicts in Component-

Based Systems. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005.
LNCS, vol. 3628, pp. 67–82. Springer, Heidelberg (2005)

11. Agt, H., Widiker, J., Bauhoff, G., Milanovic, N., Kutsche, R.: Model-based Se-
mantic Conflict Analysis for Software- and Data-integration Scenarios. Technical
Report 2009/7, Berlin University of Technology (2008)

12. Mehta, N., Medvidovic, N., Phadke, S.: Towards a Taxonomy of Softwar Connec-
tors. In: Proceedings of the 22nd International Conference on Software Engineering,
Toronto, Canada, pp. 178–187. ACM Press, New York (2000)

13. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley, Reading
(2003)

http://www.intersystems.com/ensemble/docs/4/PDFS/DataTransformationLanguage.pdf
http://www.intersystems.com/ensemble/docs/4/PDFS/DataTransformationLanguage.pdf

www.manaraa.com

Author Index

Ameedeen, Mohamed A. 221
Anane, Rachid 221
Aulagnier, Denis 277

Beuche, Danilo 289
Bézivin, Jean 18, 34
Blanc, Xavier 130
Bordbar, Behzad 221

Cancila, Daniela 98
Cartsburg, Mario 325
Cánovas Izquierdo, Javier Luis 82
Ceri, Stefano 18
Champeau, Joël 277
Charfi, Anis 237
Chen, Zhe 66
Cointe, Pierre 34

Daniele, Laura M. 206
Darrasse, Alexis 130

Eichler, Hajo 190
Engels, Gregor 158
Espinoza, Huascar 98
Estekhin, Oleg 265
Evans, Andy 301

Fernández, Miguel A. 301
Ferreira Pires, Lúıs 206
Fraternali, Piero 18

Garcés, Kelly 34
Gérard, Sébastien 98
Gerth, Christian 158
Goldschmidt, Thomas 50
Gomez, Eduardo 265
Gotel, Orlena 174
Grossmann, Juergen 265
Grønmo, Roy 2

Heidenreich, Florian 114
Hoffmann, Andreas 265

Jarke, Matthias 253
Johannes, Jendrik 114
Jouault, Frédéric 18, 34

Karol, Sven 114
Kirshin, Andrei 313
Kolovos, Dimitrios S. 146

Koudri, Ali 277
Kowalewski, Stefan 253
Kschonsak, Frank 325
Kübler, Jens 50
Küster, Jochen M. 158
Kutsche, Ralf 325

Mäder, Patrick 174
Milanovic, Nikola 325
Mohagheghi, Parastoo 301
Molina, Jesús Garćıa 82
Møller-Pedersen, Birger 2
Motet, Gilles 66
Mougenot, Alix 130

Olsen, Gøran K. 2

Palczynski, Jacob 253
Philippow, Ilka 174
Polzer, Andreas 253

Reke, Michael 253
Rose, Thomas 253

Sadovykh, Andrey 265
Schmidt, Artur 237
Schmitz, Dominik 253
Seifert, Mirko 114
Selic, Bran 98
Soden, Michael 190
Soria, Michèle 130
Soulard, Philippe 277
Spriestersbach, Axel 237
Stefanescu, Alin 313

Tisi, Massimo 18
Trew, Tim 1

van Sinderen, Marten 206
Vigier, Lionel 265

Weiland, Jens 289
Wende, Christian 114
Widiker, Jürgen 325
Wieczorek, Sebastian 313

Zhang, Ming 253

	Title Page
	Preface
	Organization
	Table of Contents
	Creating Embedded Platforms with MDA: Where's the Sweet Spot?
	Foundations
	Comparison of Three Model Transformation Languages
	Introduction
	Remove Unstructrured Cycles
	Preliminary
	RemoveGOTO by CGT
	RemoveGOTO by AGG
	RemoveGOTO by ATL
	Discussion
	Related Work
	Conclusions
	References

	On the Use of Higher-Order Model Transformations
	Introduction
	Higher-Order Transformations
	A Survey of Higher-Order Transformations
	Transformation Synthesis
	Mapping Implementation
	Generic Metamodels

	Transformation Analysis
	Transformation Composition
	Transformation Modification
	Transformation Variants
	Feature Weaving
	Changing the Engine Execution Mode
	Transformation Language Extension
	Parametric Transformation
	Transformation Adaptation

	Other Applications for HOTs
	Conclusions
	References

	Managing Model Adaptation by Precise Detection of Metamodel Changes
	Introduction
	Related Works
	Running Example
	A Sample Petri Net Metamodel
	The KM3 Metametamodel

	A Model Adaptation Approach
	Matching Equivalences and Differences
	Translation to Adaptation Transformations
	Adaptation Transformation Execution

	Experimental Validation
	Prototype Implementation
	Experimental Settings
	Metrics
	Results
	EMF Compare versus Our Approach

	Conclusions
	References

	A Pattern Mining Approach Using QVT
	Introduction
	Related Work
	General Pattern Mining Approach
	Patterns and PatternMining
	Apriori Algorithm

	Pattern Mining On Models
	Linear Extension
	Non-linear - GenMax

	Experimental Results
	Setup
	Results

	Applying Pattern Mining to Estimate Maintainability of Models
	RelatedWork within Maintainability Metrics
	Pattern Mining as Maintainability Measure

	Conclusion and Future Work
	References

	A Language-Theoretic View on Guidelines and Consistency Rules of UML
	Introduction
	The Grammar of UML in XMI
	The C-System: A Formal Language Control System
	Examples
	Related Work
	Discussion
	Conclusion
	References

	A Domain Specific Language for Extracting Models in Software Modernization
	Introduction
	Model Extraction from Source Code
	Approaches for Model Extraction
	Our Approach for Model Extraction

	A Query Language for Concrete Syntax Trees
	Gra2MoL
	Bindings and Rule Evaluation
	Implementation

	Example
	Conclusions and Future Work
	References

	Challenges in Combining SysML and MARTE for Model-Based Design of Embedded Systems
	Introduction
	Background
	UML Profiling Capabilities
	SysML and MARTE Modelling Capabilities

	Scenarios of Combined Usage
	Defining Architecture Frameworks
	Requirements Engineering
	System-Level Design Integration
	Engineering/Quantitative Analysis

	Combination Strategies
	Combination Clues

	Related Work
	Conclusions
	References

	Derivation and Refinement of Textual Syntax for Models
	Introduction
	Approach
	Mapping Modelling Concepts to Text Language Concepts
	Derivation and Refinement

	Overview of EMFText
	Examples
	Parsing and Printing of Concrete Syntax for Feature Models
	Resolving References in UML State Machines

	Related Work
	Conclusion
	References

	Uniform Random Generation of Huge Metamodel Instances
	Introduction
	Boltzmann Random Generation of Trees
	Tree Specifications
	General Generator Automatic Construction
	Boltzmann Method
	Complexity and Generation of Huge Trees

	Model Generation Based on Meta Model Specification
	Running Example
	From Metamodels to Tree Specification
	Model Final Structure Generation

	Validation
	Implementation
	Generating Instances of a Particular Size
	Influencing Generation Output

	Related Works
	Conclusion
	References

	Establishing Correspondences between Models with the Epsilon Comparison Language
	Introduction
	Background and Motivation
	The Epsilon Platform
	The Epsilon Comparison Language
	Abstract Syntax
	Concrete Syntax
	Execution Semantics
	Rule Execution Scheduling
	The Matches() and doMatch() Built-in Operations
	Fuzzy and Dictionary-Based String Matching
	Exploiting the Comparison Outcome

	Example
	Conclusions and Further Work
	References

	Dependent and Conflicting Change Operations of Process Models
	Introduction
	Background
	Dependencies and Conflicts of Change Operations
	Metamodel and Change Operations
	Dependencies and Conflicts of Changes

	Dependencies and Conflicts of Change Sequences
	Dependencies of Change Sequences
	Conflicts of Change Sequences

	Conflict Resolution
	Tool Support and Evaluation
	Related Work
	Conclusion and Future Work
	References

	Enabling Automated Traceability Maintenance through the Upkeep of Traceability Relations
	Introduction
	Motivation and Scope
	Model-Driven Software Development
	Approach and Tool Support

	Traceability Update Process
	Types of Model Changes
	Change Propagation

	Validation
	Experimental Set-Up
	Results
	Discussion
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

	Temporal Extensions of OCL Revisited
	Introduction
	Linear Temporal Logic
	Linear Temporal OCL
	Syntax Extensions for Temporal Operators
	Semantics of LT-OCL

	Example: SteamBoiler Control System
	Analysis of the Steam-Boiler

	Related Work
	Discussion

	Conclusion
	References

	An MDA-Based Approach for Behaviour Modelling of Context-Aware Mobile Applications
	Introduction
	MDA-Based Approach
	Transformation from Specification to Design Refined Model
	Source Model
	Target Model
	Transformation Relations

	Transformation from Design Refined Model to Component Model
	Source Model
	Target Model

	Related Work
	Conclusions and Future Work
	References

	A Model Driven Approach to the Analysis of Timeliness Properties
	Introduction
	Preliminaries
	Unified Modelling Language
	Petri Nets
	Model Driven Development

	Model Transformation
	Transformation Tool
	Case Study
	Case Description
	Interaction Sequence Diagram
	Model Transformation
	Model Analysis

	Discussion
	Conclusion
	References

	A Hybrid Graphical and Textual Notation and Editor for UML Actions
	Introduction
	Background
	Model-Driven Architecture
	UML Action Semantics
	The VIDE PIM Language

	Problem Statement
	Motivating Example
	Limitations of UML Action Semantics

	A Hybrid Notation for UML Actions
	Control Flow
	Basic Actions
	Variable Actions
	Structural Feature Actions

	A Visual Editor for UML Actions
	User Study
	Experimental Design
	Results and Discussion

	Related Work
	Conclusion
	References

	Applications
	Mapping Requirement Models to Mathematical Models in Control System Development
	Introduction
	Control Systems Development
	Requirements Engineering for Control Systems with i*
	Mapping i* to Matlab/Simulink
	Step 1: Resolving Ambiguities
	Step 2: Core Mapping
	Step 3: Respecting Hardware and Platform Issues

	Implementation
	Telos and ConceptBase
	Queries Support Step 1: Resolving Ambiguities
	Metamodelling, Queries, and Answer Formats Support Step 2

	Related Work
	Conclusions
	References

	On Study Results: Round Trip Engineering of Space Systems
	Introduction
	Case Study
	Methodology
	Tools
	Results
	PIM Recovery and PSM Derivation
	Code Migration
	Model-Based Testing
	Metrication

	Conclusions
	References

	MoPCoM/MARTE Process Applied to a Cognitive Radio System Design and Analysis
	Introduction
	Related Works
	Process and Application Overview
	Requirements Capture and Functional Analysis
	Abstract Modeling Level
	Execution Modeling Level
	Detailed Modeling Level
	MoPCoM Tooling
	Conclusion
	References

	Managing Flexibility: Modeling Binding-Times in Simulink
	Introduction
	Modeling and Configuring Variability in Simulink
	Taking Binding Time into Account
	Towards a Binding Time Concept for Simulink Models
	Influence of Code Generation on Variability in Simulink Models
	Specification of Binding Times for Variation Points in Simulink-Models

	Application of the Binding Time Concept as Part of the Simulink Configurator
	Summary
	References

	Experiences of Developing a Network Modeling Tool Using the Eclipse Environment
	Introduction
	Requirements of DSML and Criteria for Evaluation
	Requirements
	A Framework for Evaluating the DSML

	Design and Implementation of the DSM
	Experiences with GMF/EMF
	User Experience with the DSML Tool
	Challenges for DSML Technologies
	Conclusions and Future Work
	References

	MBT4Chor: A Model-Based Testing Approach for Service Choreographies
	Introduction
	Choreography Modeling
	Global Choreography Model
	Local Partner Model
	Channel Model

	Overview of MBT4Chor
	Translation from MCM to UML with Java Annotations
	UML Test Generator and Model Debugger
	Test Case Execution in SAP Backend
	Related Work
	Conclusions
	References

	Model-Based Interoperability of Heterogeneous Information Systems: An Industrial Case Study
	Introduction and Related Work
	Integration Scenario and the Current Solution
	BIZYCLE Integration Process
	Computation Independent Model
	Platform Specific and Platform Independent Models
	Conflict Analysis
	Connector and Code Generation

	Implementation: BIZYCLE Integration Framework
	Lessons Learned
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

